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Abstract

I develop an algorithm to estimate a flexible binary regression model with endogene-
ity by repeatedly solving a two-stage least squares problem; the algorithm is numerically
stable and guaranteed to converge regardless of starting value. The method is numer-
ically stable even when a successful outcome is rare because it has a uniformly small
condition number, unlike Newton methods with maximum likelihood estimation whose
condition number is unbounded across potential parameter values. The instrumental
variable method does not require choosing a special regressor or making assumptions
on the first stage relationship between covariates and instruments other than a rank
restriction to ensure the instruments are relevant enough.

Keywords: endogenous binary regression models; nonlinear instrumental variables; fixed-
point methods

1 Introduction

Linear probability models are a bad idea1 — especially when the probability of success is
low or high for some subpopulations — but they are easy to compute and we can handle
endogeneity with instrumental variables using standard two-stage least squares. I show how
to use two-stage least squares to estimate more realistic probability models with endogeneity
and how the method can improve the numerical stability of logistic regression, especially
when modeling “rare” events.

I use a flexible parametric model to estimate the causal effect of some vector x on the
probability that y = 1 using instruments z,

pr {y = 1|z} = E

 1

1 + exp
(
−r (x)> β

)∣∣∣z
 , (1)

*E-mail: zflynn@wisc.edu or zlflynn@gmail.com.
1See Lewbel, Dong, and Yang (2012), among other papers and textbooks, for many reasons why. The

issues with the model stem from its failure to require predicted probabilities be between [0, 1]. In fact, if the
covariates have unbounded support, the linear probability model cannot be the data generating process.
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where r is a vector of known transformations of a vector x. The endogeneity problem is that
x not only causally changes the probability of success (y = 1) but is also correlated with
unobserved determinants of success. We use the instruments z to deal with the endogeneity
problem. Economically, the instrumental variable assumption is that the only reason the
probability of success changes with z is because of z’s relationship to x; z does not otherwise
determine success2.

The advantage of the specification is that the predicted response function can be flexibly
specified and will always lie between [0, 1] unlike in a linear probability model, but there are
two challenges relative to the linear probability model, both of which I address in the paper:

1. There is not a ready closed form estimate of β, which can make computing the estimator
difficult, especially when r (x) is high-dimensional.

2. It is a nonlinear instrumental variable model and these require stronger assumptions on the
first stage (the relationship between instruments and covariates) than linear instrumental
variable models.

The advantage of this particular instrumental variable assumption over other methods of
estimating binary regression models with endogeneity (see Lewbel 2000, Dong and Lewbel
2015, Rothe 2009, Blundell and Smith 1989, Rivers and Vuong 1988, and Heckman 1976) is
that the model needs few assumptions beyond the instrumental variable assumption itself to
achieve identification. In particular, I do not need to make parametric assumptions about
the relationship between x and z (as in maximum likelihood estimation) or to assume a
“special regressor”, see Lewbel (2000), which imposes support restrictions and restricts how
flexible the approximation can be because transformations of the special regressor cannot
be included in the specification: if x1 is the special regressor, x21 cannot also be in r (x).
Identification relies only on a relevance condition which I will call a “tilting rank condition”
which is analogous to the standard rank condition in linear regression.

The most similar method computationally is the iterative least squares approach used to esti-
mate semiparametric binary choice models (without endogeneity) in Wang and Zhou (1995)
and Dominitz and Sherman (2005) in the sense that both my method and iterative least
squares use linear regression to compute step size in an iterative algorithm. The methods
are based on different principles and match different “moments” of the data. My approach
extends more naturally to models with endogeneity while iterative least squares extends
more naturally to semiparametric models.

I describe my proposed algorithm in Section 2 and, in Section 3, I show it is also more
numerically stable than using the Newton method in maximum likelihood estimation, a
standard method for estimating logistic regressions (the method used in Stata), because it
has a uniformly small condition number across potential parameter vectors while the Newton
method applied to maximum likelihood estimation has an unbounded condition number. The
method I propose is particularly more stable when “success” (the event y = 1) is rare (or
very common).

2There are other models of endogeneity and kinds of instrumental variable assumptions in binary regres-
sion models, see Lewbel (2000).
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Section 4 is a short block of Stata code to implement the estimator.

2 Algorithm

Let w (z) be a vector of transformations of z such that w (z) is equal in dimension to r (x).

I develop an iterative approach to computing β that is guaranteed to converge regardless of
starting value.

Algorithm: Repeated Two-Stage Least Squares.

1. Use two-stage least squares to estimate γ as if the model were the linear probability
model,

y = r (x)> γ + e, E [w (z) e] = 0. (2)

2. Set k = 0 and let β0 be some initial value for β.

3. Use two-stage least squares to estimate γk = γ (βk) as if the true model were,

1

1 + exp
(
−r (x)> βk

) = r (x)> γk + ek, E [w (z) ek] = 0. (3)

4. Set βk+1 = βk + γ − γk.

5. Set k = k + 1.

6. Repeat steps 3-5 until ||γ − γk|| is sufficiently small. Then β = βk.

The main assumption that both identifies the model and justifies the above algorithm is the
tilting rank condition.

Assumption 1 (Tilting Rank Condition). Let u (x) be any scalar function of x such that

u (x) > 0 for all x. Then, E
[
u (x)w (z) r (x)>

]
is invertible. This condition is always true

without endogeneity, where w (z) = r (x), because E
[
u (x) r (x) r (x)>

]
is strictly positive

definite (assuming no colinearity in r), and so, invertible.

Theorem 1. Define T (β) = β + γ − γ (β). Given the Tilting Rank Condition, T is a
contraction mapping so it has a unique fixed point. Any fixed point of T is a value of β such
that equation (1) is satisfied. So β is identified, and it is the unique fixed point of T .

Proof. Define π (x, β) =
[
1 + exp

(
−r (x)> β

)]−1
. Write DT (the derivative of T ) as (sup-

pressing dependence of w on z, of r on x, and of π on x and β),

DT = I − E
[
wr>

]−1 E [wr>π (1− π)
]

(4)

= E
[
wr>

]−1 E [wr> {1− π (1− π)}
]

(5)
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If λ is an eigenvalue of DT , then, for a nonzero vector v,

E
[
wr>

]−1 E [wr> {1− π (1− π)}
]
v = λv (6)

=⇒ E
[
wr> {1− π (1− π)}

]
v = λE

[
wr>

]
v (7)

=⇒ E
[
wr> {1− π (1− π)− λ}

]
v = 0 (8)

If λ ≥ 1, then {1− π (1− π)− λ} is strictly negative. So, by the Tilting Rank Condition,
E
[
wr> {1− π (1− π)− λ}

]
is invertible, implying v = 0, a contradiction.

If λ ≤ 0, then, similarly, {1− π (1− π)− λ} is strictly positive. So, by the Tilting Rank
Condition, E

[
wr> {1− π (1− π)− λ}

]
is invertible, implying v = 0, a contradiction.

So λ ∈ (0, 1) and the spectral norm of DT is less than 1; T is a contraction mapping with a
unique fixed point.

Because, by equation (1),

E [w (z) y] = E

w (z)
1

1 + exp
(
−r (x)> β

)
 , (9)

we know γ = γ (β) for any true value of β. So any true value of β is a fixed point of T .
Because there is only one fixed point of T , β is identified.

Inference on β is identical to making inference on the generalized method of moments esti-
mator based on the moment conditions,

E

w (z)

y − 1

1 + exp
(
−r (x)> β

)

 = 0; (10)

because repeated two-stage least squares is an algorithm for solving the above system of
moment equalities.

3 Numerical stability compared to the Newton method

applied to maximum likelihood estimation

Even when there is no endogeneity problem to deal with, the repeated linear regression
algorithm is useful because it is numerically more stable than Newton methods used in
maximum likelihood estimation, a standard method for estimating logistic regressions (the
default method in Stata). Recall that, without endogeneity, the Tilting Rank Condition is
always satisfied.
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Let L (β) be the log likelihood of a logistic regression model. The Newton method finds β
by iteration, following the rule,

βk+1 = βk −D2L (βk)
−1DL (βk) , (11)

where D2 gives the Hessian and D the gradient.

The repeated linear regression estimator uses the iteration rule,

βk+1 = βk + γ − γ (βk) . (12)

The difference between the two methods is how the step size, ∆k = βk+1 − βk, is computed.

The Newton method solves the following linear system to determine step size,

D2L (βk) ∆k = −DL (βk) . (13)

Condition numbers are a measure of how accurate a numerical solution to a problem is; in
this setting, condition numbers measure how much the solution to the linear equations would
change if the right hand side vector were slightly perturbed. Problems with large condition
numbers are numerically unstable. Let λmin (A) give the minimum eigenvalue of the matrix
A and similarly for λmax (A). The condition number of the solution to this linear system is,

κMLE (βk) =
λmax (D2L (βk))

λmin (D2L (βk))
, (14)

The second derivative of the log likelihood is,

D2L (β) = −E
[
r (x) r (x)> π (x, β)× (1− π (x, β))

]
. (15)

So, for a given parameter vector β, the minimum eigenvalue of D2L (β) can be arbitrarily
close to zero because β can be such that π (x, β) is arbitrarily close to zero or one. The
condition number is large across β,

sup
β
κMLE (β) =∞.

Repeated linear regression also determines step size by solving a linear system of equations,

E
[
r (x) r (x)>

]
∆k = E

r (x)

y − 1

1 + exp
(
−r (x)> βk

)
 . (16)

The condition number of the solution to this linear system is,

κRLR (βk) =
λmax

(
E
[
r (x) r (x)>

])
λmin

(
E
[
r (x) r (x)>

]) . (17)

Two key points:
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1. κRLR (β) is not a function of β. The starting parameter values of the algorithm do not
influence the condition number.

2. κRLR (β) depends only on the eigenvalues of E
[
r (x) r (x)>

]
. So long as the eigenvalues of

the matrix are bounded away from zero (the x’s are not colinear), the condition number
will be bounded away from infinity, for all β.

So,
sup
β
κRLR (β) = κRLR <∞.

This property of repeated linear regression makes computation more stable, especially when
success is rare or common.

4 Stata Implementation

To aid the use of the method in practice, I include an implementation of the estimator in
Stata (it assumes the dataset has variables y, r1, r2, . . . , w1, w2, . . . ):

ivregress 2sls y (r* = w*)

mat gamma = e(b)

mat beta = J(1,colsof(gamma),1)

local fit = ""

local nr = colsof(gamma)-1

forvalues i=1/‘nr’ {

local fit = "‘fit’ r‘i’*beta[1,‘i’] + "

}

local fit = "‘fit’ beta[1,‘nr’+1]"’

gen ybeta = .

mat diff = J(1,1,1)

while (diff[1,1] > 1e-8) {

qui replace ybeta = 1/(1+exp(-1*(‘fit’)))

qui ivregress 2sls ybeta (r* = w*)

mat beta = beta + gamma - e(b)

mat diff = (gamma-e(b))*((gamma-e(b))’)

}

mat list beta

5 Conclusion

I present an algorithm for estimating binary regression models with or without endogeneity.
The algorithm is numerically more stable than standard Newton maximum likelihood esti-
mation — especially when success is rare — and it allows for instrumental variables while

6



putting little restrictions on the first stage, on how instruments and covariates are related
and without requiring any special regressor or other restriction on the flexibility of the model.
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