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Identifying productivity when it is a factor
of production

Zach Flynn∗

Economists typically model a plant’s productivity as an exogenous characteristic, but the people
who run and work at manufacturing plants make choices, at a cost, that affect plant productivity.
I develop a method to partially identify the productivity distribution when such choices determine
productivity. The method uses a monotone comparative static result I prove in a general economic
model. It does not require instruments or timing assumptions. I use the method to study the effect
of implementing market-based pricing on productivity in the electricity generation industry.

1. Introduction

� In empirical work, economists typically model productivity, the residual to the production
function, as an exogenous shock plants react to1; but plants make choices, at a cost, that affect
their productivity. Plant owners choose the plant’s technology. Workers choose whether to work
hard or slack off. Managers choose whether to closely monitor workers or to let things slide.
The choices of people in response to the incentives they face determine whether an organization
is productive. This fact motivates the development of a general empirical strategy to deal with
endogenous productivity.

I model productivity as an unobserved factor of production. Under general conditions, I
prove a comparative static result: plant productivity, output, and capacity choices increase in
the latent, unobserved variables that determine the plant’s residual demand curve and its vari-
ous costs. I show that when these unobserved state variables follow a standard Markov process,
productivity, capacity, and output are positively associated in the sense of Esary, Proschan, and
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1 Most empirical work that estimates productivity uses models that suppose either productivity is exogenous or
investment in productivity can be controlled for by observables, see the proxy approach of Olley and Pakes (1996) and
Doraszelski and Jaumandreu (2013); but the idea that productivity depends on unobserved factors of production appears
at least as early as Griliches and Jorgenson (1967). They argued that if the factors of production, both physical and
intangible, were fully accounted for, there would be little left of the productivity residual—or, as they memorably called
it, “the measure of our ignorance.” The substantial identification problems this view of productivity introduces are the
subject of this article.
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Walkup (1967): the covariance of any two increasing functions of productivity, output, and ca-
pacity is positive. Although productivity itself is unobservable, with data on output, capacity,
and input use, we can construct the set of production functions such that the implied productiv-
ity is positively associated with output and capacity. Doing so partially identifies the production
function because, given the data, some ex ante reasonable production functions imply productiv-
ity distributions that do not satisfy the restriction. I develop the model, comparative static, and
identification result in Section 2.

I then show how to use this identification result to make inference on coefficients in re-
gressions where log productivity is the dependent variable (Section 3). Such coefficients are a
standard statistic of interest in the productivity literature. We use them when we want to evalu-
ate the effect of a policy on productivity2 or to learn which kinds of plants are more productive
than others. I show the bounds on these coefficients are the values of two easy-to-compute lin-
ear programming problems. To make inference on these coefficients, I use a Bayesian strategy
based on results from Kline and Tamer (2016). I compute the posterior distribution of the bounds
via simulation.

I discuss why I pursue the comparative static approach instead of an extension of the proxy
or instrumental variable approaches in Section 4.

In Section 5, I demonstrate the bounds are narrow enough to be useful in practice by us-
ing them in practice. I bound the effect of introducing market-based pricing (“restructuring”)
in the electricity generation industry on power plant productivity. Historically, state-run public
service commissions set electricity prices on the basis of the costs the utilities incurred in pro-
ducing the electricity. In the mid-1990s to early 2000s, some US states restructured the industry
by allowing markets to set electricity prices instead of public service commissions. Other states
maintained regulated pricing. When states set prices on the basis of costs, plants have less of
an incentive to reduce those costs so ending regulated pricing might have encouraged power
plants to choose to be more productive; but restructuring has other effects that encourage power
plants to reduce their productivity. For example, restructuring forced utilities to disintegrate so
that transmission, the naturally monopolistic stage of electricity production, could be regulated
while the state allowed markets to set prices in the generation stage. Any efficiencies from inte-
gration were lost with restructuring.

I study whether power plants increased their “capacity-agnostic productivity” because of
the restructuring policy. A power plant has a higher capacity-agnostic productivity if it produces
more output, holding all inputs constant, whenever it is not capacity-constrained. This multi-
factor productivity measure appears in a natural model of electricity production I develop in
Section 5. I find restructuring caused power plants to lower their productivity by between 1.12%
and 2.87%. As productivity is a choice plants make at a cost, if a policy lowers productivity, it
does not necessarily reduce welfare. The problem is an example of the empirical relevance of
allowing for endogenous productivity because the policy affects plant productivity by changing
the plants’ incentives.

This article primarily contributes to the literature on identifying the production function
and measuring productivity. The basic problem of identifying the production function is that
input choice is correlated with productivity. This problem applies whether productivity is en-
dogenously chosen or it is an exogenous parameter of the plant’s production function. A large
and old literature discusses this identification problem from Marschak and Andrews (1944) and
Griliches and Mairesse (1995) to the modern “proxy” approach to structural production func-
tion estimation developed in Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg,
Caves, and Frazer (2015), and Gandhi, Navarro, and Rivers (2019) based on the models of firm
and industry dynamics developed in Jovanovic (1982) and Hopenhayn (1992)3. Identification in

2 For example, Pavcnik (2002) uses such regressions to understand how trade liberalization in Chile affected
productivity.

3 The proxy approach has been applied to a wide range of empirical problems. These applications include studying
the effects of trade liberalization (Pavcnik, 2002) and the effect of restructuring on the telecommunications equipment
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the proxy approach is based on information and timing restrictions: restrictions on what the plant
knows when. I add to this literature a new approach not based on such restrictions, but instead
based on comparative statics derived from basic economic restrictions on the primitives of the
plant’s problem.

Doraszelski and Jaumandreu (2013) and De Loecker (2013) develop the primary method
in the prior literature to estimate endogenous productivity models. They modify the standard,
exogenous productivity proxy model by allowing plants to control productivity with observed
choices4. They assume these choices are made before any unobserved shock to productivity is
revealed to the plant. Relative to this work, I allow for unobserved investment in productivity and
do not assume when the plant makes the investment. I also do not assume productivity is the only
unobserved state variable differentiating plants or that productivity is a function of observables,
the two calling cards of the proxy approach to production function estimation.

This article also contributes to the literature studying the effect of restructuring on power
plant productivity. Fabrizio, Rose, and Wolfram (2007) is the most closely related analysis. They
estimate the effect of restructuring on conditional input demand equations5 and use a proxy for
demand (total electricity sales in a state, a measure of market size) to instrument for output; but
demand is only potentially uncorrelated with exogenous productivity. If productivity is a factor
of production, demand affects it like it affects the choice of any other factor of production. So,
their model implicitly assumes productivity is exogenous. I estimate the effect of restructuring
allowing plants to choose their productivity.

2. Partial identification in a general model of production via
monotone comparative statics

� I develop an identification strategy based on a monotone comparative static result that works
when plants choose their productivity. The model I use to establish this result is general and
encapsulates many other common models. The result holds when productivity is a static decision6

and when plants choose it with dynamic considerations7, when plants are capacity-constrained
and when they are not constrained, when competition is perfect and when it is imperfect, and
when productivity is a choice and when it is exogenous.

To give an outline of the identification strategy: I first show via monotone comparative static
methods that output, capacity, and productivity choice are increasing in the unobserved state
variables that determine a plant’s cost function and its (residual) demand curve. I pair this result
with a Markovian model of how the unobserved state variables vary across plants. This pairing
leads to the result that productivity is positively associated with output and capacity in the sense
of Esary, Proschan, and Walkup (1967): the covariance of any two increasing functions of output,
capacity, and productivity is positive. I use this result to partially identify the production function
and the productivity distribution.

Throughout the article, I use the following notation for the plant’s production function. Let
lowercase variables be in logs when uppercase variables are levels (for example, log Q = q). Q
is output, Z is a vector of L variable inputs, K is a capital or capacity input, A is total factor

industry (Olley and Pakes, 1996) and, more recently, to estimate markups (De Loecker and Warzynski, 2012; De Loecker,
Eeckhout, and Unger, 2019; Flynn, Gandhi, and Traina, 2019). See Syverson (2011) for a broader survey of applications.

4 Van Biesebrock (2003) also studied observed technology choice and how it affected productivity where he ob-
serves automobile plants adopting different technologies.

5 My measure of productivity is a single multifactor measure where productivity is the residual to a production
function. Fabrizio, Rose, and Wolfram (2007) essentially have a separate productivity shock for each input. So, the results
in this article differ from Fabrizio, Rose, and Wolfram (2007) for reasons besides the difference in identification strategy.

6 For example, productivity is a static choice when it is determined primarily by effort as in principal-agent models
of production or by quick-to-change logistical decisions about how production is organized like scheduling when certain
people work or which clients a salesperson calls.

7 For example, when productivity is a stock of capability like better machines or people.
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productivity, and F is the production function. Productivity is input neutral,

Q = F (Z, K )A ⇒ q = f (z, k) + a. (1)

I show the production function is identified in the following set:

F = { f ∈ increasing functions : for all functions φ1 and φ2

that are increasing in all arguments,

cov[φ1(q − f (z, k), q, k), φ2(q − f (z, k), q, k)] ≥ 0}. (2)

Or, equivalently, a production function f is included in the identified set if it is increasing
and the implied distribution of (a, q, k) is such that (a, q, k) is a positively associated random
vector in the sense of Esary, Proschan, and Walkup (1967).

� The model and comparative static result. I describe each element of the model I use
to derive this identification result and then introduce the profit maximization problem the plant
solves:

• Pt (Q, ξt ) gives the (residual) demand function for each plant in period t. ξ indexes how the
(residual) demand function varies across plants.

• Ct (Q, A, K,W ) is the cost of the variable inputs. Let Z be the variable inputs and W be input
prices (which may vary by plant). When the plant is capacity-constrained, the cost function is

Ct (Q, A, K,W ) = minW �Z st: F (Z, K ) ≥ Q

A
if Q ≤ K

= ∞ if Q > K. (3)

I prove two comparative static results: one for when K is capital and the plant is not capacity-
constrained and another for when K is capacity. When the plant is not capacity constrained, the
cost function C is as above without the constraint that Q ≤ K.

• Mt (At, At−1, ηt ) gives the cost of choosing a certain level of productivity, given the plant’s past
productivity. ηt indexes how the cost of building productivity varies across plants. My final
empirical strategy is the same regardless of whether productivity is chosen in period t (imme-
diately productive) or in period t − 1 (time to develop) because the form of the identified set is
the same in either case.

• Gt (Kt+1, Kt, κt ) gives the cost of building a certain level of capital or capacity given the current
level in period t. The dependence on past capacity allows it to be more expensive to go from
low to high capacity than from medium to high capacity. κt indexes how the cost of building
capacity varies across plants.

• For simplicity, I assume plants believe they have perfect foresight8.

Plants choose their output Q, their capacity or capital K, and their productivity A to maxi-
mize discounted profits for a sequence of discount factors βt ≥ 0.

max
K,A,Q

T∑
t=1

βt ×

⎡⎢⎢⎣Pt (Qt, ξt )Qt︸ ︷︷ ︸
Revenue

−Ct

(
Qt

At

, Kt,Wt

)
︸ ︷︷ ︸

Production costs

− Mt (At, At−1, ηt )︸ ︷︷ ︸
Technology cost

− Gt (Kt+1, Kt, κt )︸ ︷︷ ︸
Capital adjustment costs

⎤⎥⎥⎦. (4)

8 Relaxing this assumption for risk-neutral plants with uncertainty about their future demand or cost of productivity
is as straightforward as re-interpreting (ξ, η) as differences in beliefs about those demand and costs.
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They make these choices subject to capacity (if capacity-constrained) and nonnegativity
constraints,

0 ≤ Qt ≤ Kt, At ≥ 0. (5)

The model nests the basic proxy model developed in Olley and Pakes (1996). In the context
of this model, the Olley and Pakes (1996) proxy model assumes productivity is very expensive
to adjust (exogenous productivity)9, ξt does not vary across plants10, and there are no capacity
constraints11.

Giving meaning to the parameters (ξ, η, κ ). I now put structure on the parameters of the plant’s
decision problem. My first task is to give the parameters ξ , η, and κ a scalar meaning as opposed
to indexing an entirely general function space. Only then can we compare the demand curves,
say, of high ξ plants to the demand curves for low ξ plants. Assumption 1 specifies the meaning
of the parameters. In short, greater ξ means greater marginal revenue for a given output level,
greater η means a lower marginal cost of productivity, and greater κ means a lower marginal cost
of capital.

Assumption 1. Marginal revenue is increasing in ξt ,

∂

∂ξt

[
∂Pt

∂Q
(Qt, ξt )Qt + Pt (Qt, ξt )

]
≥ 0. (6)

The marginal cost of productivity is decreasing in ηt ,

∂Mt

∂At∂ηt

(At, At−1, ηt ) ≤ 0, (7)

and the reduction in marginal cost from higher prior productivity is also greater the greater ηt is

∂Mt

∂At−1∂ηt

(At, At−1, ηt ) ≤ 0. (8)

The marginal cost of capital is decreasing in κt and the reduction in marginal cost from
higher capital is also greater the greater κt (symmetric to the cost of productivity),

∂Gt

∂Kt+1∂κt

(Kt+1, Kt, κt ) ≤ 0, (9)

∂Gt

∂Kt∂κt

(Kt+1, Kt, κt ) ≤ 0. (10)

9 Exogenous productivity models are nested within the model by making it very expensive for the plant to adjust
its productivity. For example, set Mt (At , At−1, ηt ) = [At − ηt ]2×exponent where “exponent” is a very large integer (this M
satisfies Assumption 1). Then, ηt is the exogenous productivity sequence. Exogenous productivity models are endogenous
productivity models where it is infinitely costly to adjust productivity.

10 There is only one unobserved state variable allowed in the proxy model: productivity.
11 Capacity constraints would violate the proxy assumption that input demand is increasing in productivity for

fixed capacity. To see this, consider the Levinsohn and Petrin (2003) proxy: flexible inputs. The proxy model argues
that zt = zt (at , kt ) is increasing in at . For fixed capacity, increasing productivity eventually causes capacity constraints to
bind. When capacity constraints bind, further increasing productivity will cause the plant to cut back on its flexible input
use to keep its output below its capacity.
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Convex marginal cost of the variable inputs. I next impose a standard structure on the cost func-
tion for the Z inputs.

First, I assume the cost of the Z inputs (C) is (weakly) convex in the required output. This
assumption does not rule out increasing returns to scale. For example, in a Cobb-Douglas pro-
duction function where Z is a single input, Q = Zθz Kθk A. The cost function, conditional on K and
A choices, is convex if θz ≤ 1 even if θz + θk > 112. I rule out that θz > 1, or, more generally, I
assume the returns to scaling Z are not increasing for fixed (K, A). This captures the economic
intuition of (weakly) diminishing marginal product in the variable inputs.

Second, I assume inputs are normal. Inputs are normal if their conditional input demand
functions, Z( Q

A
, K,W ), are increasing in output. By the envelope theorem, this assumption can

be written as a restriction on the cost function,

∂

∂Q∂W
C

(
Q

A
, K,W

)
≥ 0. (11)

The best argument for normal inputs is the behavior of non-normal inputs. Plants produce
more output when the price of a non-normal input increases. It seems unlikely that an increase
in fuel prices will cause power plants to produce more electricity, but that is what would happen
if fuel were not a normal input. I assume inputs are normal using the principle that increases in a
plant’s cost of production will, all else equal, decrease how much a plant produces.

Last, I assume that, to the extent K is capital not capacity, it increases the marginal prod-
uct of the variable inputs. The reasonableness of this assumption will vary from application-to-
application, but capital is likely complementary with variable inputs in many production prob-
lems. Better machines make people and materials more productive inputs. The Cobb-Douglas
production function always satisfies this restriction. If K is just capacity, then it will not affect
the marginal product of the variable inputs (Z) at output levels below the capacity constraint,
satisfying the restriction.

Assumption 2 summarizes the structure I put on the plant’s variable cost function.

Assumption 2. The cost function of the Z inputs is convex,

∂2Ct

∂Q2
t

≥ 0. (12)

The Z-inputs are normal: their conditional factor demands are increasing in output.

∂Zt

(
Qt

At
, Kt,Wt

)
∂Qt

≥ 0. (13)

To the extent K is capital not capacity, it increases the marginal product of the Z inputs,

∂F (Zt, Kt )

∂Kt∂Zt,	

≥ 0 ∀	 = 1, . . . , L. (14)

Lemma 1 establishes that Assumption 2 implies ∂C
∂Q∂K

C( Q
A
, K,W ) ≤ 0 which will be useful

in developing the comparative static result when K is capital.

12 As productivity is also a factor of production, the returns to scale in this model also depend on the cost of
productivity. It is not simply the sum of the output elasticities of the production function F .
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Lemma 1. Given Assumption 2, marginal cost is decreasing in capital,

∂Ct

∂Qt∂Kt

(
Qt

At

, Kt,Wt

)
≤ 0. (15)

Proof. See Appendix. �

Convex investment costs for capital and productivity. G gives the cost of accumulating future
capital (or capacity) as a function of past capital. It includes the cost of investing in new capital
and the cost of maintaining present capital. One specification for the cost of investment part of
G is

constantt × (Kt+1 − δt × Kt )
exponentt , (16)

where δt is the depreciation rate of capital.
I assume capital faces (weakly) convex adjustment costs. In the above example, that amounts

to requiring exponentt ≥ 1. To make larger capital investments in a fixed amount of time, the
plant must spend more for each additional unit of investment. It is progressively more expensive
to purchase larger or better machines and more expensive to finance large expenditures than small
ones. Intuitively, the interest rate on large loans is greater than the interest rate on small loans so
the cost of raising twice as much capital is more than double.

Similarly, M (At, At−1, ηt ) gives the cost of investing in productivity. I assume convex adjust-
ment costs for productivity for the same reason I assume them for capital investment. Greater
productivity requires progressively better machines, better workers and managers, or the agent to
expend greater and greater effort to increase productivity by the same amount.

I make the following mathematical assumption to capture the economic assumption of con-
vex investment costs.

Assumption 3. The cross partial of Gt is negative for all κt ,

∂Gt

∂Kt∂Kt+1

(Kt+1, Kt, κt ) ≤ 0. (17)

The cross partial of Mt is negative for all ηt ,

∂Mt

∂At∂At−1

(At, At−1, ηt ) ≤ 0. (18)

We can see that this assumption holds for, say, Gt = constantt × (Kt+1 − δtKt )exponentt − κtKt

(the second term is the cost of maintaining current capital), when investment costs are convex,

∂Gt

∂Kt∂Kt+1

= −constantt × δt (exponentt − 1) × exponentt

× (Kt+1 − δtKt )
exponentt −2 ≤ 0. (19)

The revenue maximization problem has no interior solution. I have put structure on the cost side
of the plant’s problem (C, G, and M). I now add structure to the demand side. I assume the
revenue maximization problem has no interior solution. There is no finite revenue-maximizing
level of output ignoring the costs of producing it13. Costs limit plant output not market power.

13 This assumption is also necessary in the proxy model. If there were a revenue-maximizing output, then input
demand could not be strictly increasing in productivity as required in the proxy model. For some level of productivity,
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Although this may not be the case for some products, like pharmaceuticals, it seems likely to
be the case for many other products which either have sufficient competition so that the residual
demand curve is not too inelastic or that demand for the product itself is elastic enough. We can
operationalize this economic assumption with the following restriction on the plant’s (residual)
demand curve.

Assumption 4. The product of marginal revenue and output is increasing in Q,

∂

∂Q
[MR(Q, ξ )Q] ≥ 0 for all ξ . (20)

This assumption is true in a wide variety of demand models. It is true when the plant’s
demand curve has a constant elasticity, when demand is logistic (as in standard discrete choice
models), when plants take prices as given, and for any elastic demand curve where the absolute
value of the elasticity of demand is increasing in price14.

Theorem 1 links Assumption 4 to the economic restriction that the revenue maximization
does not have an interior solution.

Theorem 1. Given Assumption 4, if there exists no Q such that MR(Q) = MR′(Q) = 0, then
there is no interior solution to the revenue maximization problem.

Proof. See Appendix. �

Main comparative static result. Given this structure, I derive a comparative static result. The
choice of productivity, capital or capacity, and output is increasing in the underlying plant-
specific state variables (Theorem 2). The form of the result differs slightly depending on whether
K is capital or whether it is capacity.

Theorem 2. Let Y T = (Y1, . . . ,YT ) for any variable Y . Define s = (ηT , ξ T , κT , K0, A0) as the
vector of plant-specific state variables. Given Assumptions 1–4, then

(1) if K is capital, so that Q = F (Z, K )A,
(2) or if K is capacity, so that Q = min{F (Z)A, K},
then At (s,−W T ), Qt (s,−W T ), and Kt (s,−W T ) are increasing functions of s for fixed W T , and, if
K is capacity, then At (·), Qt (·), and Kt (·) are increasing in all arguments, including W T

Proof. See Appendix. �

output would reach the revenue-maximizing level and beyond that point, greater productivity would cause the plant to
cut back on other inputs to maintain output at the revenue-maximizing level.

14 To see this,

MR(Q, ξ )Q = P(Q, ξ )Q︸ ︷︷ ︸
Revenue

×
[

P′(Q, ξ )

P(Q, ξ )
× Q + 1

]
︸ ︷︷ ︸
Inverse demand elasticity plus one

⇒ ∂

∂Q
[MR(Q, ξ )Q] = MR(Q, ξ ) × ∂

∂Q

[
P′(Q, ξ )

P(Q, ξ )
× Q

]

+ Revenue(Q, ξ ) ×
[

P′(Q, ξ )

P(Q, ξ )
× Q + 1

]
.

If demand is elastic, the second term is positive because the inverse demand elasticity is greater than −1. If the elasticity
of demand is decreasing in price (increasing in absolute value), the first term is positive because the inverse demand
elasticity is then increasing and marginal revenue is positive because the demand curve is elastic.
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Theorem 2 establishes that when the state variables increase, plants choose greater output,
productivity, and capacity. When the plant is incentivized to produce more output, it is also
incentivized to be more productive and to choose greater capacity.

� Markovian state variables and positive association. s̃ = (ξ T , ηT , κT ,−W T , K0, A0) is
the vector of unobserved state variables15 that (potentially) vary across plants. If there was only
one plant-specific unobserved state variable (if s̃ was a scalar), then from the above comparative
static result, At (̃s), Kt (̃s), and Qt (̃s) would be positively correlated because increasing functions
of the same random variable are positively correlated; but s̃ is not a scalar. I show that productiv-
ity, capacity, and output are positively related for multidimensional s̃ if we add a mild statistical
structure on how s̃ varies across plants.

I assume the state vector s̃ is a Markov process, a standard assumption in dynamic economic
models. For example, in the proxy approach, the state variable is productivity, and it is assumed
to be a Markov process. I make a similar assumption for the state variables in this model with
Assumption 5.

Assumption 5. Define s̃t = (K0, A0, ξt, ηt, κt,−Wt ). Let j index the individual elements of s̃t .
State variables evolve according to the rule,

s̃ j,t = σ j,t

(̃
st−1, υ j,t

)
, (21)

where σ j,t is a weakly increasing function for all ( j, t ).
Define s̃τ = ∪τ

t=0s̃t . s̃t−1 and υt = (υ1,t, . . . , υJ,t ) are independent.

The assumption that σ j,t is increasing nests the standard Markov structure, s̃ j,t =
σ j,t (̃s j,t−1, υ j,t ), where greater s̃ j,t−1 implies a larger distribution of s̃ j,t (persistence) but adds a
bit of generality by allowing the other lagged state variables to positively affect another state
variable. The assumption that the (nonseparable) shocks are independent of the prior state is the
Markovian assumption. For example, if the state variables follow an AR1 process (with time-
varying drift and persistence parameters), they satisfy Assumption 5.

Next, I restrict how the shocks (υ1,t, . . . , υJ,t ) relate to one another. I assume they are posi-
tively associated. A random vector is positively associated if the covariance of any two increasing
functions of the vector is positive. It is a stronger restriction than positive correlation but a weaker
restriction than statistical independence. Definition 1 states some useful properties of positive as-
sociation.

Definition 1. Positive association (Esary, Proschan, and Walkup, 1967) define positive associa-
tion in the following way.

Let X be a random vector. If for any two increasing (in all arguments) functions, φ1 and φ2,
such that the required expectations exist,

cov[φ1(X ), φ2(X )] ≥ 0, (22)

then X is a positively associated random vector.
Positively associated random vectors have the following properties.

Property 1. Suppose that X and Y are both positively associated vectors and statistically indepen-
dent of each other. Then, (X ,Y ) is also positively associated. As an implication, if all elements
of a random vector X are independent, then X is positively associated because any scalar random
variable is positively associated.

15 The fact that this approach can deal with unobserved input prices (W ) is a nice property. The proxy model is not
identified with unobserved input price variation (Flynn, Gandhi, and Traina, 2019).
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Property 2. If X is positively associated, a vector of increasing functions of X , B(X ) =
[b1(X ), . . . , bN (X )], is also positively associated.

Positive association is credible. It encapsulates standard modelling assumptions: if the
shocks (υ1,t, . . . , υJ,t ) are independent of each another, they are positively associated; but pos-
itive association also allows general ability shocks to introduce positive dependence between
the shocks.

Consider the following example model of υ:

υ j,t = ι jεt + ej,t, (23)

where ej,t is independent of ek,t and ι j > 0 is a fixed parameter. All of the state variables are
“good” for the plant in the sense that they make the plant more profitable. So this structure allows
for a “talent” or quality of the plant shock in addition to shocks that affect the specific variables.
The covariance of the shocks is then, cov(υ j,t, υk,t ) = ι jιkvar(εt ) ≥ 0. I assume (υ1,t, . . . , υJ,t ) is
positively associated to capture correlations introduced in this way instead of just making the
stronger (but still reasonable) assumption that the shocks are independent.

Note that this structure puts no restriction on the dynamics of υt . The shocks do not need
to be independent or identically distributed across time. It is only a restriction on the way the
shocks relate to one another in a given time period.

Assumption 6. υt = (υ1,t, . . . , υJ,t ) is a positively associated vector.

I use Assumptions 5 and 6 and apply the properties of positive association to show that once
the state variables are positively associated, they will always be (Lemma 2).

Lemma 2. Given Assumptions 5 and 6, if s̃t−1 is positively associated, then s̃t is positively asso-
ciated.

Proof. See Appendix. �

Last, I assume that we have already reached this absorbing state in the data. If the initial state
variable draws are, say, independent of each other, a natural assumption, then we would always
be in the absorbing state. I make the weaker assumption that at some point prior to the data the
state variables were positively associated. This rules out only that the initial state variables were
negatively correlated with each other and that negative relationship has not diminished over time.

Assumption 7. (ξ0, η0, κ0, A0, K0) is positively associated.

Theorem 3 concludes s̃ itself is positively associated by induction.

Theorem 3. Given Assumptions 5–7, the state vector s̃ is positively associated.

Proof. See Appendix. �

The Markov structure when K is capital. When K is capital not just capacity, I require the ad-
ditional assumption that −W T is independent of s. Then, s is positively associated conditional
on W T . Essentially, I add to the above structure the restriction that st (the noninput price state
variables) and Wt follow separate Markov processes.

I add the restriction that Wt’s Markov process depends only on its own lagged values,

−Wt = σW,t (−Wt−1, υW,t ), (24)
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that st does not depend on lagged input prices,

st = σs,t (st−1, υs,t ), (25)

and, last, to make the processes separate, I assume the shocks to input prices are independent of
the other shocks to the state variables,

υW,t is independent of υs,t (26a)

s0 is independent of − W0. (26b)

This additional structure implies s conditional on W T is positively associated because:

(1) Theorem 3 has already established that (s,−W T ) is positively associated. It follows that s
is positively associated (unconditional on W T ) because any subset of a positively associated
random vector is positively associated;

(2) the above structure implies that W T is independent of s.

Therefore, for any two increasing functions φ1 and φ2,

cov[φ1(s), φ2(s)|W ] = cov[φ1(s), φ2(s)] ≥ 0, (27)

where the equality holds by the independence of W and s and the inequality by the result of
Theorem 3.

Economically, this structure requires that individual plants do not have monopsony power in
the input market. Otherwise, shocks to individual plants would affect input prices. This assump-
tion is not required when K is capacity. I use the K-is-capacity model in the empirical application
of this article so this restriction does not apply to the empirical contribution of the article.

� The identified set. Positive association is an ordinal property16: increasing functions of
random vectors that are positively associated are themselves positively associated. As the plant’s
choices At (s,−W T ), Kt (s,−W −T ), and Qt (s,−W T ) are increasing in s̃ = (s,−W T ) and s̃ is pos-
itively associated, (At, Kt, Qt ) are positively associated.

With data on (Qt, Kt, Zt ) some production functions imply distributions of At that satisfy this
restriction and others do not. Requiring the production function to satisfy this restriction partially
identifies the production function (Theorem 4).

Theorem 4. Given the conclusions of Theorems 2 and 3 and data on (q, z, k), the production
function f must satisfy the following conditions:

F = { f ∈ increasing functions : for all functions φ1 and φ2

that are increasing in all arguments ,

cov[φ1(q − f (z, k), q, k), φ2(q − f (z, k), q, k)] ≥ 0}. (28)

If K is capital, then the covariance restriction must hold conditional on W T .

16 Unlike other forms of positive dependence between random variables. For example, Manski and Pepper (2000)
propose monotone instrumental variable assumptions which suppose the following form of positive dependence between
covariates and the residual: ∂E[x1|x2]/∂x2 ≥ 0; but this assumption does not necessarily imply ∂E[φ(x1 )|x2]/∂x2 ≥ 0 if φ

is increasing. Suppose x1 ∼ N (x2, 2x−1
2 ) conditional on x2. Clearly, E[x1|x2] = x2 is increasing in x2, but E[exp(x1 )|x2] =

exp(x2 + 1
x2

) is decreasing for small x2. Positive association is not stronger or weaker than monotone instrumental vari-
able assumptions.
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Proof. By Theorem 3, s̃ is positively associated. By Theorem 2, a(̃s), q(̃s), and k (̃s) are all
increasing functions. By Property 2, increasing functions of positively associated random vari-
ables are positively associated. Therefore, (a, q, k) are positively associated. The proof when K
is capital is identical, except conditional on W T . �

3. Inference on productivity regressions

� I develop a practical method to use the restriction that f ∈ F and data on (Q, K, Z) to form
bounds on a common class of parameters of interest in the productivity literature.

I form bounds on the coefficients in a linear (instrumental variable) regression model where
log productivity is the dependent variable,

at = x�
t β + ut, (29a)

E[vtut] = 0, (29b)

E
[
vtx

�
t

]
is left-invertible, (29c)

τ = ρ�β, (29d)

where x is a vector of observed covariates, and v is a vector of instruments for x (v = x in regres-
sion problems)17, ρ is a known vector, and τ is the ultimate parameter of interest. For example,
τ could be a difference-in-difference or instrumental variable estimate of the effect of a policy
on productivity or the average difference in productivity between two types of plants like the
well-studied difference in productivity between exporters and nonexporters. All the parameters I
estimate in my application have the same form as τ .

Problems of this form are common in the productivity literature. For some examples of τ

from the literature, Pavcnik (2002) estimates the effect of trade liberalization in Chile on produc-
tivity using a specification with this form, Olley and Pakes (1996) answer how productivity in the
telecommunications equipment industry changed after the industry restructured, and De Loecker
(2011) studies how trade liberalization affected productivity in the Belgian textile industry18. τ

is the effect of interest in these articles. In this article, τ is the effect of restructuring on power
plant productivity.

Within the model of Section 2, xt are observable determinants or correlates of the plant’s
fundamental incentives (ξ, η, κ ). Our goal is to understand how, say, a policy affected these
incentives to increase or decrease plant productivity.

I focus directly on bounding the final parameter of interest (τ ). The advantage of doing
so is best seen by considering the alternative. The alternative is to form a confidence set for
the production function and search over the production functions in that set, computing τ for
each, a computationally intensive task. By focusing directly on the final parameter of interest, we
simplify computation of τ ’s identified set. This strategy is common in the econometrics literature
for this reason and because it often increases statistical power, see Kaido, Molinari, and Stoye
(2016) and Bugni, Canay, and Shi (2016).

We can write τ as

τ = ρ�E
[
vtx

�
t

]−1

left
E[vtat] (30a)

= ρ�E
[
vtx

�
t

]−1

left
E[vtqt] − ρ�E

[
vx�]−1

left
E[vt f (zt )]. (30b)

17 Presumably, these instruments do not include z, input use, or else we might be able to point identify the statistic
of interest. For example, if v = (z, x), then the statistic of interest is point identified.

18 For a larger list of problems like these, see Syverson’s (2011) literature review.
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The first term is point-identified from the data. In fact, it is the estimate of “τ” if we had qt

as the dependent variable in the regression instead of at . It can be computed by estimating the
instrumental variable regression,

qt = x�
t β(q) + ut (q), E[vtut (q)] = 0 (31a)

τ (q) = ρ�β(q). (31b)

More generally, let τ (y) be the estimate of “τ” when the above regression model is estimated
with the dependent variable y. We can write the parameter of interest as τ = τ (q) − τ ( f ). τ is
partially identified because f is partially identified so τ ( f ) is only partially known. Bounds on τ

are then, [
min
f ∈F

τ (q) − τ ( f ), max
f ∈F

τ (q) − τ ( f )

]
. (32)

The bounds are the values of two constrained optimization problems. The identified set F is
not convex so the bounds are the values of two nonconvex programming problems. Nonconvex
programs are difficult to solve. I construct a set that contains F and is easier-to-compute to make
the identification strategy easier to use for empirical problems.

� Linear positive association: a convex identified set. I derive a relaxation of the full pos-
itive association assumption that results in a convex identified set, making the bounds the values
of convex programming problems which are easier to solve.

I add one innocuous assumption to convexify the identified set. I assume there is no plant
that cannot produce any output no matter how many inputs it uses. There is no plant with A = 0.

Assumption 8. There is a minimal level of productivity (A ≥ A > 0). Intuitively, there exists no
plant that cannot produce any output no matter how many inputs it uses.

Given Assumption 8, I normalize the constant of the production function so that A ≥ 1.
I propose a convex relaxation of positive association I call “linear positive association.” It

uses only a subset of the φ functions used to construct the positive association identified set, F .
The resulting identified set is larger but easier to compute than F because it is convex. Specifi-
cally, linear positive association identifies the log production function in the following set, where
D f denotes the derivative of f in each of its arguments,

FLPA = { f : D f ≥ 0︸ ︷︷ ︸
Increasing production function

, q − f = a, a ≥ 0︸ ︷︷ ︸
Constant normalization

,

cov[aφ1(q, k), φ2(q, k)] ≥ 0︸ ︷︷ ︸
Linear positive association

where φ1 ≥ 0 and φ2 are increasing.}. (33)

Theorem 5 establishes that FLPA is convex.

Theorem 5. Suppose f 0 and f 1 are two elements of FLPA then f α = (1 − α) f 0 + α f 1 ∈ FLPA for
α ∈ [0, 1].

Proof. See Appendix. �

� Computing the bounds via linear programming for linear-in-parameters production
functions. In practice, the bounds on τ such that f ∈ FLPA can be computed using linear
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programming methods because we usually assume a linear-in-parameters functional form for
the production function, like the Cobb-Douglas or translog production function. Suppose the
production function is

f (z) = r(z)�
θ, (34)

where r(z) is a known vector of functions and θ is an unknown parameter vector. This parametric
form makes the problem a linear program because

(1) linear positive association requires θ to satisfy (infinitely many) linear inequalities,

�LPA =
⎧⎨⎩θ : Drθ ≥ 0︸ ︷︷ ︸

Increasing production function

, q − r(z)�
θ = a, a ≥ 0︸ ︷︷ ︸

Constant normalization

,

cov[qφ1(q, k), φ2(q, k)] ≥
∑

j

θ jcov
[
r j(z)φ1(q, k), φ2(q, k)

]
︸ ︷︷ ︸

Linear positive association

∀(φ1, φ2), where φ1 ≥ 0, Dφ1 ≥ 0, Dφ2 ≥ 0.} (35)

(2) the objective function for each bound (τ ) can be written as a linear function of the θ

parameters,

τ = E
[
vx�]−1

left
E[vtqt] − E

[
vx�]−1

left
E
[
vtr(zt )

�]
θ. (36)

The constraint set is the intersection of infinitely-many linear inequalities and the objective
function is linear so the bounds can be computed by solving (semi-infinite) linear programs.

We should not use all of the constraints in estimation when we use such a parametric form.
If we do, some of the constraints will have substantial identifying power via the functional form
we chose for the production function. I propose using only a subset of the constraints based
on the functional form of the production function. Doing so also simplifies computation of the
identified set.

Empirical economics commonly translates nonparametric identification restrictions into
weaker restrictions when it uses parametric forms in estimation. Consider a regression problem of
the form y = E[y|x] + ε. If we approximate E[y|x] by β0 + β1x we only use the moment restric-
tions E[ε] = E[xε] = 0, but if we approximate E[y|x] by β0 + β1x + β2x2 we use the moments
E[ε] = E[xε] = E[x2ε] = 0. Even though in both cases E[x2ε] = 0 could be used as a moment
restriction if we assume E[ε|x] = 0. We do so because we recognize our functional form as an
approximation. Similarly, in this setting, with a less flexible production function, highly flexible
φ functions may unduly restrict the identified set simply because it is difficult to fit a line, say,
underneath a very concave curve.

To be conservative and avoid obtaining narrow bounds through functional form, I only use
increasing functions φ1 and φ2 that are similar in complexity to the production function itself.
For example, and because this is the functional form I use in my application, if the production
function is Cobb-Douglas, I use only φ1 and φ2 that are also linear in logs.

�CD,LPA = {θ :θz ≥ 0, q − θ1 − z�θz = a, a ≥ 0,

cov[aφ1(q, k), φ2(q, k)] ≥ 0,

φ1, φ2 ∈ {
φ : φ = ϕ1 + ϕkk + ϕqq, ϕk ≥ 0, ϕq ≥ 0, ϕ1 + ϕkk + ϕqq ≥ 0

}}
. (37)
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This set is especially convenient to use in estimation because the set �CD,LPA is in fact the
intersection of only a finite number of linear inequalities (Theorem 6).

Theorem 6. Assume that the support of the observed distribution of (q, z, k) is a subset of the
rectangle: [q, q] × [z1, z1] × · · · × [zL, zL] × [k, k]. �CD,LPA can be equivalently expressed as

�CD,LPA = {θ : θz ≥ 0︸ ︷︷ ︸
Increasing production function

, q − θ1 − z�θz = a,

q − θ1 − z�θz ≥ 0︸ ︷︷ ︸
Constant normalization

,

cov[aφ1(q, k), φ2(q, k)] ≥ 0︸ ︷︷ ︸
Linear positive association

,

φ1, φ2 ∈
{
φ : φ = (k − k), φ =

(
q − q

)
, or φ = 1

}}
. (38)

Proof. See Appendix. �

The bounds on τ can then be computed by solving two finite linear programming problems,
a trivial computation. The linear program I solve to form bounds on a Cobb-Douglas production
function is

max or min θ E
[
vx�]−1

left
E[vtqt] − E

[
vx�]−1

left
E
[
vt

(
1, z�

t

)�]
θ

st: cov[qφ1(q, k), φ2(q, k)]

≥ θ1cov[φ1(q, k), φ2(q, k)] +
L∑

	=1

θz,	cov[z	φ1(q, k), φ2(q, k)]

q ≥ θ1 + z�θz

θz ≥ 0

∀(φ1, φ2) ∈
{

k − k, q − q, 1
}
. (39)

� Bayesian inference using results from Kline and Tamer (2016).

Inference on the parameters of the linear program. We do not know the parameters of the linear
program. We have to estimate them from data and account for estimation error.

The linear programs are fully determined by a finite vector of moments of the data which I
call μ. The moments μ are expectations of random variables which determine the covariance re-
strictions in �CD,LPA and the moments in the objective function: E[vx�], E[vy], and E[v(1, z�)�].

I use a Bayesian method from Kline and Tamer (2016) to make inference on μ and, there-
fore, on the identified set for τ . Let π (μ|data) be the posterior distribution of μ given the data and
�n(μ) be the multivariate normal distribution with mean μ̂ and covariance matrix n−1� where μ̂

is the maximum likelihood estimator of μ and � is the covariance matrix of the estimate. I use
the sample means for μ̂ and the sample covariance matrix for �.

As μ is a vector of reduced-form parameters, Bernstein-von Mises theorems imply the pos-
terior distribution of μ converges to a normal distribution centered around the true parameter
value, regardless of the prior specified for μ19. This result allows us to use the distribution �n(μ)

19 So long as the prior’s support includes the reals or otherwise includes a neighborhood of the (frequentist) proba-
bility limit of μ̂
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as an approximation to the posterior distribution π (μ|data) in large samples without specifying
a prior for μ directly. See Bickel and Kleijn (2012) and the results they cite.

Inference on τ . As the identified set for τ is fully determined by μ, the posterior probability that
a given value τ0 is in the identified set is, with a sufficiently large sample,

ρn(τ0) =
∫

μ

1{τ0 ∈ [τLB(μ), τU B(μ)]}d�n(μ), (40)

where the posterior distribution of μ is approximated by �n. Computing ρn(τ0) does not require
computing posterior beliefs about τ itself. Posterior beliefs about τ would always depend on our
prior no matter how much data we accumulate because τ is only partially identified by the data.
So it is more convenient to make inference on the bounds directly.

I use the ρn(·) function to form what I call a “Bayesian Hypothesis Interval” (BHI). The
BHI is the set of parameter values τ0 such that our posterior belief that the likelihood a certain
parameter value belongs to the identified set exceeds α, similar to the frequentist confidence
interval which is the set of parameters that are not rejected by a hypothesis test. I call the resulting
interval, a “Bayesian Hypothesis Interval,” because it mimics the hypothesis test characterization
of the frequentist confidence interval.

Formally, the hypothesis interval is defined as

HIα,n = {τ0 : ρn(τ0) ≥ α}. (41)

To compute the hypothesis interval, I do the following:

(1) take B draws from the distribution N (μ̂, n−1�̂): μ(1), . . . , μ(B);
(2) for each μ(b), compute: τ

(b)
LB = τLB(μ(b) ) and τ

(b)
U B = τU B(μ(b) ) by solving the two linear pro-

grams;
(3) the hypothesis interval includes all τ0 such that:

1

B

B∑
b=1

1
(
τ

(b)
LB ≤ τ0 ≤ τ

(b)
U B

) ≥ α. (42)

� Why I use a Bayesian method. I use a Bayesian method for inference because it has prac-
tical advantages over frequentist methods in partially identified models. The bounds on τ are
known functions of moments of the data, but the functions are not differentiable. Bayesian meth-
ods can simply sample from the posterior distribution of these moments and apply the known
functions to recover posterior beliefs about the bounds. Whether these functions are smooth or
not does not matter. Bayesian inference is straightforward in the setting because it is conditional
on the data. It does not need to consider how the distribution of estimates will change as we
gather more data, but the asymptotic distribution for frequentist inference depends on exactly
this, complicating frequentist inference on nonsmooth functions of means20.

In general, frequentist and Bayesian inference will not coincide in partially identified mod-
els (see Moon and Schorfheide, 2012), but see Kline and Tamer (2016) for when they do in
large samples.

20 Hsieh, Shi, and Shum (2017) propose one frequentist method of making inference on the value of a linear
program based on performing hypothesis tests on the Kuhn-Tucker optimality conditions. Similar to most methods for
frequentist inference in partially identified models (see Chernozhukov, Hong, and Tamer, 2007; Chernozhukov, Lee,
and Rosen, 2013 for other examples studying related problems), we would need to choose tuning parameters to select
potentially binding moments. We need to do this to have reasonable power if we have a decent number of constraints or
else the number of moments is equal to the dimension of the Kuhn Tucker conditions, which is large. We would likely
need to use something similar to the generalized moment selection procedure of Andrews and Soares (2010). There is
limited theory available on how best to choose these tuning parameters in this literature.
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4. Why I do not use a proxy or instrumental variable approach

� I now discuss why I introduce a new method for estimating endogenous productivity. I
explain why I do not pursue a modification of the proxy approach or search for an instrument.

The main method in the current literature for estimating endogenous productivity models is
from Doraszelski and Jaumandreu (2013) and De Loecker (2013), who use a modification of the
proxy model. The following transition equation in their model illustrates their main identification
assumptions,

at = g(at−1, xt−1) + et, E[et |at−1, xt−1, kt] = 0, (43)

where et is a shock to productivity and xt−1 are observed variables representing the endogenous
investment plants make in their productivity. The identification strategy in the proxy literature is
based on making assumptions about information sets: assumptions about what the plant knows
when. The proxy approach assumes that the plant knows et in period t but does not know it in
period (t − 1). It assumes the choices (xt−1, kt ) are made in period (t − 1) so they cannot be made
on the basis of et , justifying the above moment restrictions.

This structure rules out much of what the general model of productivity choice I propose
allows. In many interesting models of productivity choice, et as defined above will either be
partially known in (t − 1) or xt−1 will be chosen partially in period t. For example, the following
are ruled out by the proxy approach, but allowed in the comparative static approach21:

• Flexible productivity. Productivity is flexible if it can be adjusted in the current period. This is
ruled out by the proxy model because either (i) xt−1 includes this flexible choice, in which case
it is correlated with et because xt−1 then must be in the period t information set or (ii) xt−1 does
not control for this choice so the choice is a part of et which is then chosen with knowledge
of the plant’s current state variables, among which are (at−1, xt−1, kt ) violating the moment
condition. An example of flexible productivity is workers putting in greater effort because
a firm introduced a new performance incentive. Flexible productivity choice is an especially
acute example of the proxy model’s identification problems with flexible factors of production.
For the identification problem with observed flexible inputs (see Gandhi, Navarro, and Rivers,
2019).

• Unobserved adjustments to productivity. Even if productivity is inflexible and a firm makes
all its decisions about productivity in period t − 1, if some of that investment is not included
in xt−1, the proxy model will not be identified. If xt−1 does not completely control for prior
investment in productivity, some of that investment is included in et and that investment was
made with knowledge of the (t − 1) information set. et will then be correlated with variables
in the (t − 1) information set, like (at−1, xt−1, kt ), contrary to the assumed moment conditions.
This is important because it may seem like when we want to understand the causal effect of
something on productivity we can just include the variable of interest in xt−1, but we cannot. For
example, De Loecker (2013) sets xt−1 to whether the plant is an exporter in period t. He wants
to find the causal effect of exporting on productivity, not just the selection effect described
in Melitz (2003). It is very reasonable to assume that entry into exporter status in period t is
uncorrelated with information that only became available in period t; but if we think plants can
learn from exporting, we should also think plants can learn in other ways or, more generally,
that plants can take actions that affect their productivity. Unless exporter status fully explains
plant investment decisions in productivity, the proxy approach does not identify the production
function.

21 Here, I focus on the differences in the model of productivity not on the other generalizations I make relative to
the proxy model. For example, I also allow for multiple unobserved state variables that cannot be proxied by observables
and capacity constraints which are ruled out by the proxy model.
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Direct instrumental variable approaches also face additional challenges when productivity
is a factor of production. I put to the side the important data issues with finding instruments
in common production data sets and consider the general instrumental variable problem. The
production equation is, using the notation from the model in Section 2,

qt = f (zt (̃s), kt (̃s)) + at (̃s). (44)

Note that (z, k) are determined by the exact same state variables as a. The only difference
between productivity and inputs is that we observe inputs and do not observe productivity. There-
fore, finding a variable that is correlated with one set of factors of production (observed inputs)
but not correlated with the choice of another factor of production (productivity) requires impos-
ing restrictions that make productivity in some way different than the other factors of production.
For example, a demand shock (a change in ξ in Section 2 model) would naturally affect the
choice of all factors of production, observed inputs and productivity. A shock to the price of an
observed input would cause substitution to or from productivity like it would for all other factors
of production.

Of course, we could assume that productivity cannot react to current period shocks to de-
mand or input prices, but that observed inputs can, a timing restriction that effectively allows
some state variables to affect input choice but not productivity; but such a restriction is difficult
to motivate when we are not sure exactly what productivity is. Is productivity like capital or ca-
pacity (fixed in the current period) or is it effort (which can be flexibly adjusted)? The goal of
this article is to avoid such timing assumptions and discover what we can learn from a general
economic model of productivity choice.

5. How restructuring affected power plant productivity

� Although my identifying assumptions derived from this general economic model are weak,
the bounds they imply are narrow enough to answer real empirical questions. I demonstrate the
bounds’ identifying power by using them to study how restructuring in the electricity industry
affected power plant productivity. This application demonstrates the empirical importance of
endogenous productivity because the main mechanism through which restructuring might affect
a plant’s productivity is by affecting its incentive to become more productive.

� Industry and policy background. I start by briefly describing the history of regulation
in the electricity industry, how the restructuring policy movement changed the industry in the
United States, and how restructuring incentivizes power plants to be more or less productive.

Historically, electric utilities were vertically integrated across the three stages of production:
generation, transmission, and retail to end consumers. The price utilities received for the elec-
tricity they produced was tied to the costs they incurred in producing it. Roughly, public service
commissions set price to the utility’s average cost of producing the electricity plus a regulated
rate of return on capital investments22. If a utility lowered its costs, it would receive a lower price,
giving it less of an incentive to reduce costs and invest in higher productivity. In the mid-to-late
1990s, several US states restructured their electricity markets. They split up the vertically inte-
grated utilities and let markets determine the price of electricity. By disintegrating the utilities,
the states were able to regulate the naturally monopolistic stage of electricity production, elec-
tricity transmission, while allowing for competition in the generation stage. See Borenstein and
Bushnell (2015) for a fuller history of the restructuring policy.

I study how this policy affected power plant productivity. Market-based pricing gives power
plants an incentive to be more productive. If they have lower costs than their competitors, they can

22 In some states, rewards were not based on average cost but on some approximation of marginal cost, but the
main point is that the price was not set by market forces. See Knittel (2002) for more on these other policies.
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earn greater markups; but the restructuring policy also has several effects that might reduce pro-
ductivity. First, any efficiencies from integration across generation and transmission are lost with
restructuring. Second, distortions caused by rate-of-return regulation might actually lead plants to
overinvest in productivity (see Averch and Johnson, 1962). If there was such an overinvestment,
market-based pricing would cause plants to draw back those investments, reducing productivity
but increasing welfare. Last, restructuring increased the level of competition in the industry both
by introducing price competition and by making it easier for power producers not owned by elec-
tric utilities (independent power producers) to enter the market. Increases in competition do not
necessarily encourage firms to be more productive, see Vives (2008), the Schumpeterian growth
literature (Aghion and Howitt, 1992), and patents. Greater competition reduces future profits so
plants see less advantage to investing in productivity.

I study how restructuring affects power plant productivity empirically. I am not the first to
do so (see Fabrizio, Rose, and Wolfram, 2007; Knittel, 2002). My contribution to this literature
is an estimate of the effect of restructuring that allows power plants to adjust their productivity
in response to the change in incentives.

Although at first it may not be clear whether power plants can take meaningful actions to
adjust productivity, Bushnell and Wolfram (2009) find evidence that power plants and their oper-
ators influence how productive the plant is. They find substantial variation in plant performance
within the same power plant depending on the identity of the plant operator. In interviews with
industry participants, they find the belief that the “skill and effort” of key employees mattered for
plant performance. The skill and effort of employees is a form of endogenous productivity be-
cause it can be purchased by hiring better employees and by offering incentives for performance.

At first glance, it might seem that workers should have little scope to influence the perfor-
mance of the electricity industry and that this should be particularly true of the generation
sector, where costs are dominated by the capital required to build plants and the fuel re-
quired to operate them. Overall, labor costs constitute a small fraction of generation costs.
Yet in extensive interviews with plant managers and utility executives in the United States
and Europe, most expressed the belief that the individual skill and effort of key personnel
could make a significant difference in the performance of generating plants.
Bushnell and Wolfram (2009)

� Data. To study how restructuring affects power plant productivity, I need data on power
plant output and input use. I use the same data as Fabrizio, Rose, and Wolfram (2007) for the years
1981–199923, and then extend the data set until 2003. The first restructuring policy changes were
in 1996, so the data has information on power plants before and after some states restructured
their electricity markets.

The data are at the power plant-level and includes large (greater than 100 Mw capacity),
fossil fuel power plants. I measure output by millions of megawatt-hours of electricity generated
net of electricity the power plant uses itself, fuel use by units of heat energy (in millions of million
British thermal units), capacity by the total nameplate capacity of the plant (in megawatts), labor
by total employment, and nonfuel expenditures in millions of dollars. The data are annual.

I include only power plants with positive employment and nonfuel expenses because I use
a Cobb Douglas production function. Additionally, some fuel data are clearly incorrect. Some
plants have impossibly large or small fuel-to-output ratios, likely because the utility filled out
the form using different units than requested. To deal with the measurement error, I use the aver-
age heat rates for different types of fossil fuel power plants published by the Energy Information
Administration in 2004 and remove observations that have a heat rate more than twice the average
heat rate or less than one-half the average rate.

23 I thank Fabrizio, Rose, and Wolfram for making their data available and easy to use.
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FIGURE 1

RELATIONSHIP BETWEEN FUEL AND ELECTRICITY GENERATED (WITH MISMEASURED
OBSERVATIONS), OBSERVATIONS BETWEEN THE TWO LINES MAKE UP THE DATA SET I USE

TABLE 1 Descriptive Statistics of Data (with Mismeasured Observations Removed)

Statistic Plants Output Fuel Capacity Labor Nonfuel

Mean All 3.38 34.93 798 153 14.33
IO 3.48 35.90 827 153 14.72

Median All 2.10 22.15 575 112 9.86
IO 2.22 23.28 614 114 10.20

Standard deviation All 3.69 37.15 666 133 14.43
IO 3.75 37.71 678 131 14.83

Number of plant-years 11,390
Range of years 1981–2003

Note: IO refers to power plants owned by investors. Output is in units of millions of megawatt hours, fuel is in units
of millions of million British thermal units, capacity is in megawatts, labor is in number of employees, and nonfuel
expenditures are in millions of dollars.

Figure 1 shows the joint distribution of fuel and power and which observations I mark
as mismeasured.

Table 1 gives descriptive statistics on the data with the mismeasured observations removed.

� A model of electricity production and a measure of productivity. I use the data to es-
timate a model of electricity production. The model uses the physical nature of the production
process to inform the shape of the production function. It starts by recognizing that, within a
short window of time, a power plant can only produce more electricity by burning more fuel.
Output increases roughly in proportion to the energy content of the fuel burned. Let Q(σ ) be the
power produced within a short window of time σ , H (σ ) be the amount of fuel burned, and K (σ )

be the available capacity within the short time window σ . The above description of electricity
production translates into a specialization of the capacity model of K in Section 2,

Q(σ ) = min
{
H (σ )Lθ	Eθe A, K (σ )

}
, (45)
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where L is the number of workers employed, E is nonfuel expenditures (mostly maintenance and
other operating costs), and θ are the parameters of the production function.

I sum across these short time periods for the entire year (the data are annual) to get the
production equation I take to the data,∑

σ

Q(σ ) = Lθ	Eθe
∑

σ

H (σ )A ⇒ Q = Lθ	Eθe HA, (46)

because H (σ )Lθ	Eθe ≤ K (σ ) for all time periods σ . Although Q = H × Lθ	Eθe A, the output elas-
ticity of H is not 1. Increasing H would cause more of the capacity constraints K (s) to bind
throughout the year.

For the purposes of constructing the identified set, we can treat (Q/H ) (fuel efficiency) as
our output measure and (L, E ) as our vector of inputs (Z from the theory in Section 2),

Q

H
= Lθ	Eθe A. (47)

A is my measure of productivity. I call it “capacity-agnostic productivity” because it mea-
sures how output would vary across plants if all plants used the same inputs and were never
capacity-constrained. For the remainder of the article, “productivity” refers to this measure
of productivity.

� Identifying the effect of restructuring. With a measure of productivity in hand, I turn to
the problem of identifying how restructuring affects it. This identification problem is essentially
orthogonal to the problem of identifying productivity itself. Even if we observed productivity in
a data set, we would need to deal with the problem that restructured and nonrestructured states
differ aside from the restructuring policy itself. The average effect of restructuring is not the
difference in average productivity between restructured and regulated states.

I identify the causal effect of restructuring on productivity by using a difference-in-
difference-like strategy and plant fixed effects. Throughout this subsection, I treat productivity as
observed and consider the problem of identifying the effect of restructuring without reference to
the problem of measuring productivity. I establish a mapping between a distribution of produc-
tivity and the effect of restructuring. In later sections, I use the partial identification result and
the data to restrict the set of allowed productivity distributions and so, using this mapping, bound
the effect of restructuring.

I consider two different control groups to identify the effect of restructuring.

Control group 1: investor-owned power plants in regulated states. My first identification strategy
identifies the effect of restructuring by comparing investor-owned power plants in restructured
states to investor-owned power plants in regulated states, holding plant level productivity differ-
ences and aggregate productivity shocks fixed.

Let EverRestructit be 1 if the state the plant is in ever restructured and zero otherwise and let
Yit be the years since restructuring or zero if the state the plant is in never restructured (equivalent
to interacting Yit with EverRestructit). I estimate the following regression using data only on
investor-owned power plants,

ait = τa × Restructit + τPOST,aYit1(Yit > 0) + τPRE,aYit + κamrt

+μ20 × 1(Ageit ≤ 20) + μ30 × 1(Ageit ≤ 30)

+μ40 × 1(Ageit ≤ 40) + ι × EverRestructit + νi + δt + uit, (48)

where i indexes plants, t indexes year, νi is the plant-level fixed effect, δt is the year-level fixed
effect, mrt is a measure of market size (log population in the plant’s Census division), and
Restructit is 1 if the power plant is in a state where the restructuring law has passed and is 0
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otherwise. The age of the power plant is the number of years since its construction. Note that
20, 30, and 40 are roughly the 25th, 50th, and 75th quantiles of the age distribution. The pre-
and post-trend in restructured states control for nonrestructuring related restructured-state spe-
cific trends and also for potentially dynamic effects of restructuring. The regression uses plant-
level fixed effects to control for permanent differences in productivity across plants unrelated to
restructuring.

The inclusion of plant level fixed effects is important for interpreting the estimated effect.
τa is the average effect of restructuring on an individual plant, the within-plant effect. It is not the
selection effect of the restructuring policy. Restructuring may make less productive plants more
or less competitive leading to entry or exit, but that is not included in τa. The policy could have a
selection effect without power plants having any control over their productivity (as in the Melitz,
2003 model). On the other hand, if we think power plants decide to be more or less productive
in response to the new incentives offered by restructuring, then plants must be able to adjust
their productivity. The plant-level effect of restructuring demonstrates the empirical relevance of
productivity choice.

Within the model in Section 2, the covariates on the right hand side are correlates and
determinants of the fundamental incentives of each power plant (the ξ , η, and κ parameters).
The goal is to understand whether restructuring changes these incentives causing power plants to
increase or decrease productivity.

Control group 2: municipally owned power plants in restructured states. The specification above
fails to identify the causal effect of restructuring if there is a shock unrelated to restructuring but
specific to restructured states that occurred in the same year as restructuring. Such a shock would
be confused with the restructuring policy itself.

To deal with this concern, I also estimate the effect of restructuring by using municipally
owned power plants in restructured states as the control group. As municipally owned power
plants were not directly affected by the policy, the “effect” of restructuring on municipally owned
power plants captures shocks in restructured states unrelated to the restructuring policy.

This specification uses data on both investor-owned and municipally owned power plants:

ait = τa × RestructitIOit + βa × Restructit + τPOST,aYit1(Yit > 0)IOit + τPRE,aYitIOit

+βPOST,a × Yit1(Yit > 0) + βPRE,a × Yit + κamrt

+μ20 × 1(Ageit ≤ 20) + μ30 × 1(Ageit ≤ 30) + μ40 × 1(Ageit ≤ 40)

+ ιa × EverRestructit + ιIOU,a × EverRestructitIOit + νi + δt + uit, (49)

where IO indicates whether the plant is investor owned. This specification measures the causal
effect of restructuring by how productivity changes within an investor-owned plant relative to
how it changes within a municipally owned plant when the restructuring law is passed, controlling
for pre- and post-trends, market size, and aggregate productivity shocks.

Although this specification can identify the effect of restructuring in the presence of con-
temporaneous shocks in restructured states, there is a trade-off in using it rather than control
group 1. The incentives of the owners of municipally owned power plants, municipalities, are
different than the incentives of private investors and comparison between the two plant types
could face its own issues. I use both approaches to check the robustness of my results.

� How restructuring affected fuel efficiency, output, and input use. Having established
a method of identifying the effect of restructuring on productivity for a given productivity dis-
tribution, I now consider the problem of identifying the smallest and largest possible effects
of restructuring given that the productivity distribution satisfies the identification restrictions
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TABLE 2 Effect of Restructuring on Plant Fuel Efficiency and Plant Factor Use

Dependent Variable Control Group Restructuring Post-Trend Pre-Trend Market Size

Fuel efficiency IO −1.32% 0.66% −0.04% 2.67%
(0.53%) (0.20%) (0.03%) (0.75%)

MUNI −2.92% −1.24% 0.09% 3.16%
(1.19%) (0.80%) (0.07%) (0.75%)

Power IO −10.01% −2.69% −1.66% 6.24%
(3.31%) (1.28%) (0.21%) (4.73%)

MUNI −6.04% −19.56% 0.35% 8.16%
(7.29%) (4.90%) (0.44%) (4.57%)

Fuel IO −8.69% −3.35% −1.61% 3.57%
(3.15%) (1.21%) (0.20%) (4.50%)

MUNI −3.12% −18.32% 0.26% 5.00%
(6.91%) (4.64%) (0.42%) (4.33%)

Capacity IO −2.48% −1.23% −0.31% −2.87%
(0.98%) (0.38%) (0.06%) (1.40%)

MUNI −5.17% −7.30% −0.37% −2.80%
(2.08%) (1.40%) (0.13%) (1.30%)

Labor IO −1.72% 1.38% −0.95% 7.94%
(1.57%) (0.60%) (0.10%) (2.24%)

MUNI 7.74% −4.20% −0.69% 9.06%
(3.58%) (2.41%) (0.22%) (2.25%)

Nonfuel expenditures IO −3.84% −3.65% −0.26% 4.11%
(2.29%) (0.88%) (0.15%) (3.27%)

MUNI −6.33% −9.26% −1.00% 6.37%
(5.14%) (3.45%) (0.31%) (3.22%)

Note: Restructuring is the immediate effect of restructuring (τ ), Post-trend is the annual trend in the effect of restructuring
(τPOST ), Pre-trend is the difference in trend between restructured and regulated states before restructuring (τPRE ), and
Market Size is the coefficient on log market size (κ). Control group IO refers to the specification using only investor-
owned power plants where such power plants in nonrestructured states are the control group (control group 1). Control
group MUNI refers to the specification using both plants and municipally owned power plants in restructured states as
the control group (Control group 2).

proposed in Sections 2 and 3. Recall from Section 3 that τa can be written as

τa = τq−h − τ	θ	 − τeθe, (50)

where τq−h is the effect of restructuring on fuel efficiency estimated using the same regres-
sion model we use to estimate the effect on productivity but with q − h as the dependent variable,
τ	 is the effect on labor use, and τe is the effect on nonfuel expenditures. The (τq−h, τ	, τe) param-
eters are all point identified, but the θ parameters are only partially identified.

Table 2 presents estimates of the point-identified τ parameters. I find the effect of restructur-
ing on log fuel efficiency (τq−h) is negative. τq−h = −1.32% if we use regulated investor-owned
power plants as the control group or τq−h = −2.92% if we use municipally owned power plants
in restructured states as the control group.

I also find restructuring caused power plants to use less inputs and reduce the amount of
electricity they produced. Plant output fell by 10% after restructuring. As the use of other inputs
increases fuel efficiency, one explanation for the fall in fuel efficiency is simply that power plants
used fewer factors of production as a result of restructuring. We cannot tell from the fact that fuel
efficiency fell whether productivity decreased.

With estimates for τq−h, τ	, and τe, I can use the partial identification method proposed in the
previous sections of this article to restrict θ , the parameters of the production function. Doing so
partially identifies τa, the effect of restructuring on productivity.
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TABLE 3 Effect of Restructuring on Plant Capacity-Agnostic Productivity

Parameter Control Group LB (10%) LB UB UB (10%)

Restructuring MUNI −4.53% −2.87% −2.44% −0.98%
IO −2.01% −1.44% −1.12% −0.46%

Market size MUNI 0.88% 2.33% 3.09% 4.38%
IO 0.99% 2.31% 2.95% 4.20%

Post-trend MUNI −0.84% −0.22% 0.32% 0.96%
IO 0.22% 0.54% 0.68% 1.02%

Pre-trend MUNI 0.09% 0.22% 0.36% 0.51%
IO −0.08% −0.04% 0.08% 0.12%

Restructuring (MUNI) MUNI −0.54% 0.79% 1.45% 3.19%
Post-trend (MUNI) MUNI −0.22% 0.28% 0.77% 1.28%
Pre-trend (MUNI) MUNI −0.46% −0.33% −0.25% −0.13%

Note: Columns “LB (10%)” and “UB (10%)” give the upper and lower limits of the 10% hypothesis interval for the
parameter (containing all parameter estimates that are at least 10% likely to belong to the identified set as measured
by the posterior distribution). LB and UB refer to the point estimates of the bounds. IO refers to investor-owned power
plants in nonrestructured states (control group 1). MUNI refers to municipally owned power plants in restructured states
(control group 2). Restructuring is the immediate effect of restructuring (τa), Post-trend is the annual trend in the effect of
restructuring (τPOST,a), Pre-trend is the difference in trend between restructured and regulated states before restructuring
(τPRE,a), and Market Size is the coefficient on log market size (κa). I also report the parameters giving the “effect” of
restructuring on for municipally owned plants (β, βPOST , βPRE ).

� The effect of restructuring on power plant productivity. Empirically, the linear positive
assumption restricts θ to a set such that for every value of θ in the set, restructuring reduces
productivity. The effect of restructuring on productivity is between −4.53% and −0.46% across
the two control group specifications using the 10% hypothesis interval. To maintain the same
output as before, a plant would need to burn 0.46% to 4.53% more fuel if it has the same labor
and nonfuel expenditures. The point estimates of the bounds are between −2.87% and −1.12%.
See Table 3 for full results.

The effect size is economically meaningful. Fuel costs about $3.25 per million British ther-
mal units (EIA data, 2003 dollars). Multiplying $3.25 by 1% of average fuel use in 2003 we have
that a 1% increase in fuel use (from a base of average fuel use) in 2003 costs $1, 085, 802 in 2003
dollars for the average power plant. A 1% increase in fuel use would, by the same calculation,
require about 17,730 metric tons more carbon dioxide to be emitted at natural gas power plants.
Taking the low-end of the EPA’s Social Cost of Carbon ($11 per metric ton of carbon dioxide),
this extra fuel use would cost society about $195, 030 for a natural gas power plant using an
average amount of fuel.

Disruption effect. The negative productivity effect of restructuring could either be a result of
the loss in efficiency from disintegrating generation and transmission dominating the plants’
greater incentive to reduce costs, or the effect of the policy could be negative initially because
it temporarily disrupted power plant operations as they adjusted to the new policy (see Holmes,
Levine, and Schmitz, 2012). If the negative effect is simply a temporary disruption, the policy
might increase productivity in the long run.

To investigate the disruption theory, I study the slope of the post-restructuring trend (τPOST ).
I estimate the annual trend in the effect of restructuring to be between 0.22% and 1.02% using
investor-owned power plants as the control group and between −0.84% and 0.96% using munic-
ipally owned power plants as the control group. The number of years until the policy effect is
positive is (if τPOST ≥ 0 and τa ≤ 0),

−1 × τa

τPOST

. (51)
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As the results using municipal plants as the control group allow for τPOST ≤ 0, the upper
bound on the time it would take for the effect to be positive is unbounded. I study the lower
bound on the time it takes for the sign of the restructuring effect to flip to investigate whether the
disruption theory can be supported by the data24.

The lower bound on the number of years until the effect of restructuring is positive using
control group 1 is 1.73, but the lower bound using control group 2 is 8.40. As the maximum
number of years post-restructuring in sample is 9, the results for control group 2 suggest that the
productivity effect of restructuring is long-lasting; but the results using control group 1 suggest
the sign may flip relatively soon: the upper bound on the time until the sign flips is only 2.78.
So, whether we believe the disruption story depends on which specification we believe is correct.
Both specifications agree that the immediate effect of the policy is to reduce productivity.

Market size and productivity. I also measure the effect of market size on productivity. Market
size has a theoretically ambiguous effect. Larger markets both encourage entry, increasing com-
petition and flattening the residual demand curve (a lower ξ in the Section 2 model, reducing
productivity), and shift the demand curve outward (a greater ξ , increasing productivity). See the
large literature on how market size affects market structure: Shaked and Sutton (1987), Sutton
(1991), Bresnahan and Reiss (1991), Melitz (2003), and Syverson (2004)25.

I find larger markets increase productivity. The elasticity of productivity with respect to
market size is between 0.80% and 4.59%. The demand expansion effect of larger markets domi-
nates the effect of increasing competition. In the language of the model in Section 2, market size
increases ξ .

This result is evidence that demand shocks affect productivity. It is difficult to explain why
demand shocks would affect an individual plant’s productivity with an exogenous productivity
model. Although such models often find the average productivity of surviving plants is greater in
larger markets (see Melitz 2003), my estimate of the effect of market size is from regressions with
plant level fixed effects. So, I am measuring the within-plant effect of an increase in market size.
Market size affects the productivity distribution in exogenous productivity models by affecting
the surviving distribution of productivity not by affecting the productivity of individual plants.

To see the distinction, suppose we had two markets alike in every way except that one market
is of size 1 and the other market is of size 2. Suppose that productivity is exogenous and plants
make a standard entry decision. If each market is Melitz-like, the average productivity of the
surviving plants in the market of size 1 will be less than the average productivity of the surviving
plants in the market of size 2. Market size will be uncorrelated with productivity conditional on
the characteristics of the plants that survive in both markets (i.e., if we include plant fixed effects)
because, in an exogenous productivity model, identical plants will have identical productivities in
both markets. In an endogenous productivity model, identical plants may have different produc-
tivities in each market so including plant fixed effects would not make the coefficient on market
size zero.

To the extent that the controls included in my regression model do not make markets “iden-
tical in every way” except market size or control for all plant characteristics, exogenous produc-
tivity models still may be able to explain the coefficient, but the nonzero coefficient on market
size given the controls I do have is at least suggestive of productivity choice.

� The effect of restructuring on aggregate productivity. Liberalizing electricity markets
affects more than the productivity of individual power plants. It also affects the allocation of
output across power plants which in turn affects aggregate productivity measures, like output-

24 I form a lower bound on the time until the sign of the policy reverses by solving a fractional linear programming
problem because both τ and τPOST are linear functions of θ . Fractional linear programming problems can be transformed
into linear programming problems so the same methods to bind the other parameters can be used to form these bounds.

25 The two Sutton articles on “endogenous sunk costs” are especially related to the current problem because en-
dogenous productivity can be viewed as such a cost.
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weighted productivity. The effect of restructuring on aggregate productivity may differ from
the plant-level effect because aggregate productivity increases both when unweighted average
plant-level productivity increases and when greater output is allocated toward more productive
power plants.

I call the aggregate productivity measure I use “geometric aggregate productivity” (GAP).
It is the geometric average of productivity weighted by output share (Olley and Pakes, 1996 use
the arithmetic mean). The only reason I use the geometric mean is that forming the bounds is
computationally simpler than for the arithmetic mean because the bounds are the solution to
linear programs following Section 3:

oit = Qit∑
j∈state Qjt

(52a)

GAPstate,t =
∏

i∈state

Aoit
it . (52b)

Following Olley and Pakes (1996), I decompose aggregate productivity into an average
productivity term and a reallocation term which measures the covariance between market share
and productivity:

log GAP = 1

N

∑
i

ai︸ ︷︷ ︸
Average Productivity

+
∑

i

(
ai − 1

N

∑
i

ai

)
×

(
oi − 1

N

∑
i

oi

)
︸ ︷︷ ︸

Reallocation term

. (53)

I estimate the effect of restructuring on the two terms both separately and in combination. I
use a regression model in the same vein as the specifications I used for the plant-level effects,

bstate,t = τb × Restructstate,t + τPRE,bYstate,t + τPOST,bYstate,t × 1(Ystate,t > 0)

+ Year fixed effect + State fixed effect + ustate,t, (54)

where b is either log GAP, average log productivity, or the reallocation term. I estimate the regres-
sion both using only investor-owned power plants to compute aggregate productivity and using
all power plants.

Restructuring caused average log productivity in a state to fall between −5.50% and
−1.88% for investor-owned plants and by −5.59% and −0.92% for all power plants. Average
state productivity fell like plant-level productivity fell; but among investor-owned power plants,
the plants directly affected by the policy, the reallocation effect of the policy was positive, be-
tween 0.77% and 3.09%26. This result suggests that restructuring improved the allocation of
output so that it went toward more productive power plants because output was now allocated
across these plants by a market. The positive sign of the reallocation effect gives evidence that
the new market for electricity more efficiently allocated output across the investor-owned power
plants even though it reduced average productivity.

The net effect of the reallocation and average productivity is still negative. The effect of re-
structuring on GAP for all power plants is between −4.02% and −0.21% (point estimate between
−2.29% and −1.78%) and among only investor-owned power plants GAP is between −3.64%
and 0.26% (point estimate between −2.17% and −1.44%). See Table 4 for full results on the
effects of restructuring on GAP.

26 The reallocation effect including all power plants has a positive point estimate for the lower bound, but the 10%
hypothesis interval extends from −0.17% to 2.52%.
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TABLE 4 Effect of Restructuring on Geometric Aggregate Capacity-Agnostic Productivity (GAP)

Variable Parameter Plants Included LB (10%) LB UB UB (10%)

GAP Restructuring IO −3.64% −2.17% −1.44% 0.26%
All −4.02% −2.29% −1.78% −0.21%

Post-trend IO −0.24% 0.31% 0.91% 1.49%
All 0.08% 0.70% 1.04% 1.59%

Pre-trend IO −0.14% 0.03% 0.06% 0.17%
All −0.11% −0.03% 0.09% 0.19%

Average productivity Restructuring IO −5.50% −3.93% −3.43% −1.88%
All −5.59% −3.81% −2.69% −0.92%

Post-trend IO −0.45% 0.08% 1.08% 1.64%
All −0.23% 0.34% 0.75% 1.28%

Pre-trend IO −0.00% 0.10% 0.22% 0.32%
All −0.01% 0.09% 0.20% 0.30%

Reallocation Restructuring IO 0.77% 1.76% 2.14% 3.09%
All −0.17% 0.85% 1.53% 2.52%

Post-trend IO −0.68% −0.38% 0.23% 0.50%
All −0.29% 0.06% 0.36% 0.69%

Pre-trend IO −0.23% −0.16% −0.13% −0.07%
All −0.18% −0.12% −0.09% −0.03%

Note: Columns “LB (10%)” and “UB (10%)” give the upper and lower limits of the 10% hypothesis interval for the
parameter (containing all parameter estimates that are at least 10% likely to belong to the identified set as measured by
the posterior distribution). LB and UB refer to the point estimates of the bounds. IO results look at aggregate productivity
for investor-owned power plants only. Restructuring refers to the immediate effect of restructuring, Post-trend refers to the
post restructuring trend in the effect of restructuring, and Pre-trend indicates the difference in trend between restructured
and non-restructured before restructuring.

� Welfare interpretations. I close the empirical section of this article with a caveat. The
results are not a full welfare analysis of the restructuring policy. The negative productivity effect
of restructuring does not imply the policy lowered welfare. Not only are there nonproductivity
effects of restructuring, it also may be efficient for power plants to reduce their productivity
because, in the model of Section 2, productivity is a factor of production bought at a cost.

In fact, there is good reason to believe this might be the case. As rate-of-return regulation re-
wards utilities with a regulated rate-of-return for a given capital investment, Averch and Johnson
(1962) show utilities subject to rate-of-return regulation will overinvest in capital inputs, distort-
ing the ratio of the marginal product of noncapital inputs to capital inputs from their efficient
levels.

If the rate of return allowed by the regulatory agency is greater than the cost of capital but
is less than the rate of return that would be enjoyed by the firm were it free to maximize
profit without regulatory constraint, then the firm will substitute capital for the other factor
of production…
Averch and Johnson (1962)

So, to the extent productivity is an unobserved capital, ending rate-of-return regulation
might have caused power plants to efficiently reduce their productivity.

6. Conclusion

� Standard production function estimation methods assume productivity is exogenous or else
that any investment in it is observed. I show that we can allow productivity to be endogenous
and meaningfully partially identify policy-relevant statistics of the productivity distribution. I
prove a comparative static result that holds in a general economic model and use it to construct
a statistical restriction on the productivity distribution. I then propose a practical estimator for
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the identified set based on this restriction. The bounds are computed simply by solving two
linear programming problems. I apply the inference method to form bounds on the effect of
restructuring in the electricity industry on power plant productivity.

More structure could be added to narrow the identified set. An advantage of the comparative
static method of this article is that the result does not depend delicately on the model used, but on
the fundamental economics of the plant’s production problem. It is worth searching for similarly
robust restrictions we could put on the data to narrow the bounds. The search for identification
in the production function literature has been long. The best hope for a path forward is by using
identification restrictions that are based on the basic economics of production.

1. Appendix: Proofs

� Proof of Lemma 1. From the envelope theorem, the derivative of C with respect to Q is �

∂C

∂Q
= 1

A
× λ, (A1)

where λ is the Lagrange multiplier on the output constraint.
From the envelope theorem, the derivative of C with respect to K is

∂C

∂K
= −λFK (Z, K ) = −A × ∂C

∂Q
× FK (Z, K ). (A2)

Differentiating ∂C/∂K with respect to Q gives

∂C

∂K∂Q
= −A × ∂2C

∂Q2
× FK (Z, K ) − A × ∂C

∂Q
× F�

ZK

∂Z

∂Q
. (A3)

By Assumption 2,

• marginal cost is increasing so the first term is negative;
• FZK ≥ 0 and inputs are normal so they have increasing conditional demand functions, ∂Z/∂Q ≥ 0. So, the second term

is negative.

Therefore,

∂C

∂K∂Q
≤ 0. (A4)

� Proof of Theorem 1. Assume there is an interior solution (Q�) to the revenue maximization problem. The first-
order condition then requires �

MR(Q� ) = 0. (A5)

The second-order condition requires

MR′(Q� ) ≤ 0. (A6)

As there is no Q such that MR(Q) = MR′(Q) = 0, it must be that MR′(Q� ) < 0. Therefore,

MR′(Qstar
) × Q + MR(Q) < 0, (A7)

which contradicts Assumption 4. Therefore, there is no interior solution to the revenue maximization
problem. �

� Proof of Theorem 2. First, I prove the result when K is capacity. To establish the comparative static result, I
make use of the Topkis (1978). The theorem requires that the constraint set is a lattice (closed under minimization
and maximization operations), that the objective function is supermodular in all the choice variables, and that it has
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increasing differences in any given choice with any parameter that we are trying to show the choice is increasing in.
What this amounts to is showing that the objective function has positive pairwise cross partials with respect to any two
choices and any one choice and any one parameter. �

These requirements are cardinal assumptions. They may hold for some increasing transformations of the choices
and parameters but not others. That is the case in this problem. I consider optimization not in the natural parameters
but in Q̃t = Qt/At , Kt , and At . Furthermore, I split the problem into an inner and outer optimization problem and apply
the Topkis (1978) theorem to both. I do so because the constraint set Q̃t At ≤ Kt is not a lattice in (Q̃t , At , Kt ) (consider
(4, 1, 4) and (1, 2, 3), the maximum of both is (4, 2, 4) which is not in the set). The constraint set is a lattice in (Q̃t , Kt ).

I write the optimization problem as

max
A

max
K,Q̃

T∑
t=1

βt ×

⎡⎢⎣Pt

(
Q̃t At , ξt

)
Q̃t At︸ ︷︷ ︸

Revenue

−Ct

(
Q̃t ,Wt

)︸ ︷︷ ︸
Production costs

− Mt (At , At−1, ηt )︸ ︷︷ ︸
Technology cost

− Gt (Kt+1, Kt , κt )︸ ︷︷ ︸
Capital adjustment costs

⎤⎥⎦.

st: Q̃t At ≤ Kt (A8)

First, I consider the interior optimization problem. I want to show that Q̃t (s, AT ,W T ) and Kt (s, AT ,W T ) are in-
creasing in the strong set order in (s,W T , AT ). This requires showing the pairwise partial derivatives are positive.

Derivative with respect to Q̃t . The derivative with respect to Q̃t is:

βt ×
[

P′(Q̃t At , ξt

)
Q̃t A

2
t + P

(
Q̃t At , ξt

)
At − ∂C

∂Q̃t

(
Q̃t ,Wt

)]
. (A9)

I show that it is increasing in all elements of (s, At ).
The derivative with respect to At is

βt × [
P′′(Q̃t At , ξt

)
Q̃2

t A2
t + 2P′(Q̃t At , ξt

)
Q̃t At + P′(Q̃t At , ξt

)
Q̃t At + P

(
Q̃t At , ξt

)]
(A10a)

= βt

∂

∂Qt

[MR(Qt , ξt )Qt ] ≥ 0, (A10b)

by Assumption 4.
The derivative with respect to ξt is

βt × At

∂

∂ξt

[
P′(Q̃t At , ξt

)
Q̃t At + P

(
Q̃t At , ξt

)] = βt At

∂

∂ξt

MR(Qt , ξt ) ≥ 0, (A11)

by Assumption 1.
The derivative with respect to −Wt is

βt × ∂C

∂Q̃t∂Wt

≥ 0, (A12)

by Assumption 2. By the envelope theorem, the derivative with respect to Wt is the conditional input demand
function and by Assumption 2, that function is increasing in Q̃t .

No other parameters or choices appear in the derivative with respect to Q̃t . So, all cross partials are positive
as required.

Derivative with respect to Kt . The derivative of the objective function with respect to Kt is

−βt × ∂Gt

∂Kt

(Kt+1, Kt , κt ) − βt−1
∂Gt−1

∂Kt

(Kt , Kt−1, κt−1 ). (A13)

The derivative with respect to Kt+1 is

−βt

∂Gt

∂Kt+1∂Kt

≥ 0, (A14)

by Assumption 3.
The derivative with respect to Kt−1 is

−βt−1
∂Gt−1

∂Kt−1∂Kt

≥ 0, (A15)

by Assumption 3.
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The derivative with respect to κt is

−βt × ∂Gt

∂Kt∂κt

≥ 0, (A16)

by Assumption 1.
The derivative with respect to κt−1 is

−βt−1 × ∂Gt−1

∂Kt∂κt−1

≥ 0, (A17)

by Assumption 1.
No other parameters or choices appear in the Kt derivative so all cross-partials are positive as required.
By the Topkis (1978) theorem, Q̃t (s, AT ,W T ) and Kt (s, AT ,W T ) are increasing in (s, AT ,W T ).
Now, we move to the outer optimization problem. My goal here is to show that At (s, −W T ) is increasing in

(s, −W T ). Let the Lagrange multiplier on the period t capacity restriction be λt .
By the envelope theorem, the derivative with respect to At is

βt ×
[

P′(Q̃t At , ξt

) × Q̃2
t At + P

(
Q̃t At , ξt

) × Q̃t − ∂Mt

∂At

(At , At−1, ηt )

]
(A18a)

−βt+1 × ∂Mt+1

∂At

(At+1, At , ηt+1 ) − λt Q̃t . (A18b)

From the first-order condition with respect to Q̃t

βt × [
P′ × Q̃t A

2
t + P × At − CQ̃

] = λt At (A19a)

⇒ βt × [
Qt MR(Qt , ξt ) − Q̃t × CQ̃

] = Q̃t Atλt . (A19b)

Substituting this expression in to the derivative with respect to At gives

βt

[
Q̃t

At

× ∂C

∂Q̃t

(
Q̃t ,Wt

) − ∂Mt

∂At

(At , At−1, ηt )

]
(A20a)

−βt+1 × ∂Mt+1

∂At

(At+1, At , ηt+1 ). (A20b)

The derivative with respect to At+1 gives

βt

⎡⎣ ∂Q̃t

∂At+1

At

× ∂C

∂Q̃t

(
Q̃t ,Wt

) + Q̃t

At

× ∂2C

∂Q̃2
t

(
Q̃t ,Wt

) × ∂Q̃t

∂At+1

⎤⎦
−βt+1

∂M

∂At+1∂At

(At+1, At , ηt ). (A21)

The first term is positive because Q̃t is increasing in At+1 and because marginal cost is positive. By Assumption 2,
marginal cost is increasing in output, so the second term is positive as well. The third term is positive by Assumption 3.

The derivative with respect to At−1 is, symmetrically, also positive.
The derivative with respect to ηt is

−βt × ∂Mt

∂At∂ηt

≥ 0, (A22)

by Assumption 1.
Symmetrically, the derivative with respect to ηt+1 is also positive.
For the other parameters, it is easier algebraically to first use the envelope theorem to recover the derivative of the

objective with respect to the parameter and then take the derivative with respect to At ′ (where t ′ ∈ {1, . . . , T }).
The derivative of the interior objective with respect to ξt is

βt

∂P

∂ξ
× Q̃t At . (A23)
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Differentiating with respect to At ′ gives

βt ×
[

∂P

∂Q∂ξ
× ∂Qt

∂At ′
× Qt + ∂P

∂ξ
× ∂Qt

∂At ′

]
= (A24a)

βt × ∂Qt

∂At ′
×

[
∂P

∂Q∂ξ
× Qt + ∂P

∂ξ

]
= (A24b)

βt × ∂Qt

∂At ′
× ∂

∂ξ
MR(Q, ξ ) ≥ 0, (A24c)

by Assumption 1 and by the previous result that Q̃t is increasing in At ′ .
The derivative of the interior objective with respect to −Wt gives

βt

∂C

∂Wt

(
Q̃t ,Wt

)
. (A25)

Differentiating with respect to At ′ gives

βt

∂C

∂Q̃t∂Wt

(
Q̃t ,Wt

) × ∂Q̃t

∂At ′
≥ 0, (A26)

by Assumption 2 and the result that Q̃t is increasing in At ′ .
The derivative of the interior objective with respect to κt is

−βt × ∂Gt

∂κt

. (A27)

Differentiating with respect to At ′ gives

−βt ×
[

∂Gt

∂Kt+1∂κt

× ∂Kt+1

∂At ′
+ ∂Gt

∂Kt∂κt

× ∂Kt

∂At ′

]
≥ 0, (A28)

by Assumption 1 and from the above result that Kt is increasing in productivity.
Therefore, At (s, −W T ), Qt (s, −W T ), and Kt (s, −W T ) are increasing in all arguments.
K is capital. When K is capital, not capacity, then the plant’s problem is

max
K,A,Q̃

T∑
t=1

βt × [
P
(
Q̃t At , ξt

)
Q̃t At − C

(
Q̃t , Kt ,Wt

) − M (At , At−1, ηt ) − Gt (Kt+1, Kt )
]
, (A29)

and the constraint set is simply (Q̃t , At , Kt ) ≥ 0 which is a lattice. I show that Q̃t (s, −W T ), Kt (s, −W T ), and
At (s, −W T ) are increasing in s for fixed W T . The proof strategy is similar to the above.

Derivative with respect to Q̃t . The derivative with respect to Q̃t is the same as in the previous proof. It is increasing
in At and in s as shown above. It is also increasing in Kt because

−βt

∂C

∂Kt∂Q̃t

≥ 0, (A30)

by Assumption 2.
Derivative with respect to Kt . The derivative with respect to Kt is the same as in the previous proof except that

−βtCK is included as well. It is increasing in (At , Kt−1, Kt+1 ) and in s by the above argument and because, as shown
above, it is increasing in Q̃.

Derivative with respect to At . The derivative with respect to At is

βt ×
[

P′(Q̃t At , ξt

)
Q̃2

t At + P
(
Q̃t At , ξt

)
Q̃t − ∂M

∂At

(At , At−1, ηt )

]
− βt+1

∂M

∂At

(At+1, At , ηt+1 ). (A31)

It is increasing in Q̃t because we have already shown that Q̃t ’s derivative is increasing in At and increasing in Kt

because we have already shown that Kt ’s derivative is increasing in At .
The derivative with respect to ξt is

βt × Q̃t × ∂

∂ξt

[
P′(Q̃t At , ξt

)
Q̃t At + P

(
Q̃t At , ξt

)] ≥ 0, (A32)

by Assumption 1.
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The derivative with respect to At−1 is

−βt

∂M

∂At−1∂At−1

(At , At−1, ηt ) ≥ 0, (A33)

by Assumption 3.
The derivative with respect to ηt is

−βt

∂M

∂ηt∂At

≥ 0, (A34)

by Assumption 1.
The derivative with respect to At+1 is

−βt+1
∂M

∂At+1∂At

(At+1, At , ηt+1 ) ≥ 0. (A35)

The derivative with respect to ηt+1 is

−βt+1
∂M

∂ηt+1∂At

M (At+1, At , ηt+1 ) ≥ 0, (A36)

by Assumption 1.
This establishes that the objective function is supermodular in (Q̃, A, K ) and has increasing differences between s

and these choices. Therefore, by Topkis (1978), At (s, −W T ), Qt (s, −W T ), and Kt (s, −W T ) are increasing in s.

� Proof of Lemma 2. σt is an increasing function of (̃st−1, υt ). υt and s̃t−1 are both positively associated and υt is
independent of s̃t−1. By Property 1, we know that the random vector (̃st−1, υt ) is positively associated. By Property 2, we
know that because s̃t = σt (̃st−1, υt ) is a vector of increasing function of that positively associated random vector, it too is
positively associated. So, s̃t is positively associated. �

� Proof of Theorem 3. By Lemma 2, if s̃t−1 is positively, then so is s̃t . �
By Assumption 7, s̃0 is positively associated.
By induction, s̃t is positively associated for all t. s̃ = ∪T

t=0 s̃t . As (̃s0, s̃1 ) is positively associated, it follows that
(̃s2, s̃1, s̃0 ) is positively associated because s̃2 is an increasing function of (̃s1, s̃0, υ2 ) which is positively associated.
Following the induction argument, s̃ itself is positively associated.

� Proof of Theorem 5. The derivative of f α is �

D f α = (1 − α)D f 0 + αD f 1 ≥ 0, (A37)

because D f 0 ≥ 0 and D f 1 ≥ 0.
For any two increasing functions φ1(q, k) and φ2(q, k),

cov
[(

q − f 0
)
φ1, φ2

] ≥ 0, cov
[(

q − f 1
)
φ1, φ2

] ≥ 0 (A38a)

⇒ αcov
[(

q − f 0
)
φ1, φ2

] + (1 − α)cov
[(

q − f 1
)
φ1, φ2

] ≥ 0 (A38b)

⇒ cov[(q − f α )φ1, φ2] ≥ 0. (A38c)

So, f α ∈ FLPA because it satisfies linear positive association and is an increasing function.

� Proof of Theorem 6. Call the set in the theorem’s conclusion which only uses a finite number of φ functions
�̃CD,LPA. To show �̃CD,LPA = �CD,LPA, I show that �̃CD,LPA both contains and is contained by �CD,LPA. �

As (q − q) and (k − k) are both functions that would be used in �CD,LPA by making the choices ϕ1 = −q, ϕq = 1,

ϕk = 0 and ϕ1 = −k, ϕq = 0, ϕk = 1, clearly any element of θ that belongs to �CD,LPA will also belong to �̃CD,LPA.
I show that any element θ ∈ �̃CD,LPA also belongs to �CD,LPA. Let θ ∈ �̃CD,LPA, then we know:

cov
([

q − θ1 − z�θz

](
q − q

)
,
(

q − q
))

≥ 0, (A39a)
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cov
([

q − θ1 − z�θz

](
q − q

)
, (k − k)

)
≥ 0, (A39b)

cov
([

q − θ1 − z�θz

]
(k − k), (k − k)

) ≥ 0, (A39c)

cov
([

q − θ1 − z�θz

]
(k − k),

(
q − q

))
≥ 0. (A39d)

We want to show that θ satisfies

cov
([

q − θ1 − z�θz

][
ϕ1,1 + ϕ1,kk + ϕ1,qq

]
, ϕ2,1 + ϕ2,kk + ϕ2,qq

) ≥ 0 (A40)

for ϕ that satisfy: ϕk ≥ 0, ϕq ≥ 0 and ϕ1 + ϕkk + ϕqq ≥ 0.
First, consider only ϕ such that ϕ1 = −ϕkk − ϕqq. Then the functions are: ϕq(q − q) + ϕk (k − k). I show that θ

satisfies the covariance restrictions for functions of this form:

• θ satisfies the covariance restrictions for functions of the form ϕ1,q(q − q) and ϕ2,q(q − q),

ϕ1,qϕ2,qcov
([

q − θ1 − z�θz

](
q − q

)
,
(

q − q
))

(A41a)

= cov
([

q − θ1 − z�θz

]
ϕ1,q

(
q − q

)
, ϕ2,q

(
q − q

))
≥ 0. (A41b)

• θ satisfies the covariance restrictions for functions of the form ϕ1,k (k − k) and ϕ2,q(q − q),

ϕ1,kcov
([

q − θ1 − z�θz

]
(k − k), ϕ2,q

(
q − q

))
(A42a)

= cov
([

q − θ1 − z�θz

]
ϕ1,k (k − k), ϕ2,q

(
q − q

))
≥ 0. (A42b)

• Summing the two restrictions shows that θ satisfies the covariance restrictions for functions of the form ϕ1,q(q − q) +
ϕ1,k (k − k) and ϕ2,q(q − q),

cov
([

q − θ1 − z�θz

]
ϕ1,k (k − k), ϕ2,q

(
q − q

))
(A43a)

+ cov
([

q − θ1 − z�θz

]
ϕ1,q

(
q − q

)
, ϕ2,q

(
q − q

))
(A43b)

= cov
([

q − θ1 − z�θz

](
ϕ1,k (k − k) + ϕ1,q

(
q − q

))
, ϕ2,q

(
q − q

))
≥ 0. (A43c)

• Symmetrically, we can show that θ satisfies the covariance restrictions for functions of the form ϕ1,q(q − q) + ϕ1,k (k −
k) and ϕ2,k (k − k).

• Summing the covariance restrictions together establishes that θ satisfies all covariance restrictions of the form ϕ1,q(q −
q) + ϕ1,k (k − k) and ϕ2,q(q − q) + ϕ2,k (k − k),

cov
([

q − θ1 − z�θz

](
ϕ1,k (k − k) + ϕ1,q

(
q − q

))
, ϕ2,q

(
q − q

))
(A44a)

+ cov
([

q − θ1 − z�θz

](
ϕ1,k (k − k) + ϕ1,q

(
q − q

))
, ϕ2,k (k − k)

)
(A44b)

= cov
([

q − θ1 − z�θz

](
ϕ1,k (k − k) + ϕ1,q

(
q − q

))
, (A44c)

ϕ2,q

(
q − q

)
+ ϕ2,k (k − k)

)
≥ 0. (A44d)
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For any function ϕ1 + ϕqq + ϕkk such that ϕq ≥ 0 and ϕk ≥ 0, the minimum value of the function across observed
(q, k) is no smaller than ϕ1 + ϕqq + ϕkk. As the function must be positive, ϕ1 ≥ −ϕqq − ϕk . We have already shown that
θ satisfies the covariance restrictions for ϕ1 = −ϕqq − ϕkk.

Clearly, the constant ϕ2,1 does not matter for the covariance because cov(X1, X2 + constant) = cov(X1, X2 ). So, the
covariance restrictions hold for ϕ2,1 + ϕ2,qq + ϕ2,kk.

As ϕ1,1 = −ϕ1,qq − ϕ1,kk + � where � ≥ 0, by the linearity of covariance, we can write the covariance restrictions
for ϕ1,1 + ϕ1,qq + ϕ1,kk as

cov
([

q − θ1 − z�θz

]
� (A45a)

ϕ2,1 + ϕ2,qq + ϕ2,kk
)

(A45b)

+ cov
([

q − θ1 − z�θz

](
ϕ1,k (k − k) + ϕ1,q

(
q − q

))
(A45c)

ϕ2,1 + ϕ2,qq + ϕ2,kk
)
. (A45d)

The first term is positive because θ ∈ �̃CD,LPA and � ≥ 0 so � × cov(a, ϕ2,1 + ϕ2,qq + ϕ2,kk) ≥ 0.
The second term is positive by the above results establishing that the linear positive association holds for ϕ of that

form for θ ∈ �̃CD,LPA. So,

cov
([

q − θ1 − z�θz

](
ϕ1,1 + ϕ1,kk + ϕ1,qq

)
ϕ2,1 + ϕ2,qq + ϕ2,kk

) ≥ 0. (A46)

�
Therefore, θ ∈ �CD,LPA because θ satisfies the covariance restrictions for any increasing, positive function of the

form: ϕ1 + ϕqq + ϕkk.
This establishes that �̃CD,LPA = �CD,LPA.
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