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Abstract

We show standard methods to estimate production functions do not identify markups.
This nonidentification creates spurious skewness in estimated markup distributions.
We also show that ex-ante structure on the returns to scale solves the identification
problem. In US public firm data and in a Monte Carlo experiment, we find that
applying constant returns to scale performs remarkably well and reduces the skewness
in the markup distribution among public-firm by as much as half in comparison to
nonidentified estimates. This results in half the efficiency losses in output and labor
shares when calibrated to a recent macroeconomic model.
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An emerging class of macroeconomic research argues that the rise of firm market power
explains several important secular trends in the global economy: among them are falling
output growth and labor shares (Karabarbounis and Neiman (2013)), and rising industrial
concentration and corporate profits (Barkai (2017)).1 A key mechanism that connects these
empirical patterns with the rise of market power is the growing importance of very large
(mega) or highly productive (superstar) firms with very high markups.

In this paper, we empirically study whether “mega markups” have emerged in the US econ-
omy of the last 40 years. We first show that the standard proxy variables techniques for
measuring markups with production data, which underlie many current studies, do not
identify markups. This nonidentification creates spurious skewness in the estimated markup
distribution.

However, we also show markups are identified if we add further structure to the production
function. We specifically study the identifying power of knowing the returns to scale (RTS).
If the RTS is known ex ante, or the RTS depends on fixed or dynamic inputs (e.g. capital),
then we show both the production function and firm markups are separately identified.

When external information on the RTS is unavailable, a practical way to apply our approach
is to impose constant returns to scale (CRS). A variety of applied production papers (e.g.
Basu and Fernald (1997), Syverson (2004), Foster et al. (2008), and Bloom et al. (2012))
argue CRS is a good approximation. CRS has also become standard in much applied work
with firm-level data as well as macroeconomic models with heterogeneous firms (Atkeson
and Burstein (2008); Melitz and Ottaviano (2008); Hsieh and Klenow (2009); Asker et al.
(2014); Peters (2018); Edmond et al. (2018); Eggertsson et al. (2018)). Our identification
argument gives rise to a natural extension of the standard GMM estimators, which makes the
RTS structure simple to use in practice. For illustration, we present the moment conditions
explicitly for the Cobb-Douglas and translog production functions.

We apply our approach to estimate production functions for US public firms and document
significant advantages of our estimator against real data. The standard existing approach
to markup estimation emanates from De Loecker and Warzynski (2012), which combines
insights from Hall (1988) with proxy variable production function methods.2 We call this
combination the DLW estimator.3 We find that the DLW estimator produces markups
that are similar to the theoretical upper bound implied by the proxy structure alone (i.e.
without assuming CRS), exceeding the upper bound for more than 40% of firm-year ob-
servations. Consequently, underidentified estimators are a key driver of previous estimates
of mega markup firms. Moreover, these markups are unstable across common specification
choices: under a Cobb-Douglas specification, the DLW estimator produces aggregate markup
estimates just above 1; under a translog specification, this statistic jumps to above 6. As a
reference point from a product with famously inelastic demand, the cigarette smoker demand
elasticities in Chaloupka (1991) under pure monopoly imply a markup of 2. Our proposed

1See Syverson (2019) for a broad review of this literature.
2By far the most popular estimators in this vein are Olley and Pakes (1996), Levinsohn and Petrin

(2003), and Ackerberg et al. (2015). As of June 2019, these papers collectively have over 12,000 Google
Scholar citations.

3For example, see De Loecker and Eeckhout (2017).
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identification strategy estimates a lower variance and skewness of markups and produces
stable estimates across specifications.

We explore the economic implications of our markup estimates by appealing to the recent
literature on markups in macroeconomic models.4 In standard models, efficient allocation
of resources implies low and relatively equalized markups. High markup firms should see
increased resource flows, decreasing their markups. To quantify the efficiency implications
of our empirical results, we rely on sufficient statistics proposed in the Peters (2018) model
of innovation, firm dynamics, and heterogeneous markups. The stationary markup distribu-
tion is Pareto, whose tail index measures efficiency losses from lower creative destruction.
Fitting our baseline estimates to a Pareto distribution and hence the Peters model, we find
annual output losses from markups of about 1 percent of GDP (100B to 200B USD annu-
ally). Furthermore, the labor share is 11 percent lower than an idealized benchmark. These
estimates are similar in size to the findings of Edmond, Midrigan, and Xu (2018), which
uses an alternative heterogeneous firm model that is not directly calibrated to the empirical
markup distribution. Estimates from the DLW model would incorrectly double these losses.

We also explore the implications of our identification strategy through a quantitatively cal-
ibrated Monte Carlo analysis. We assume the data generation process follows a workhorse
dynamic macro model parametrized closely to the empirical calibration of Edmond, Midri-
gan, and Xu (2018). In our Monte Carlo experiments, we find that the bias from ignoring
the flexible input identification problem is large. Nonidentification produces biases that are
twenty times as large in percentage terms as our proposed estimator when the true RTS is
one, and four times as large even when the true RTS is drawn uniformly between [0.9, 1.1].

Controlling the data generation process allows us to investigate an alternative source of
identification suggested in the literature: serially correlated input prices that vary across
firms. Such variation overcomes the flexible input problem when: (1) firm-level prices are
observable, and (2) the input price variation is orthogonal to productivity and output prices.
These conditions are largely impractical. (1) is rarely available in production datasets that
span the number of industries required to inform macroeconomic research questions. (2)
means the price variation cannot come from quality differences – firms would need to pay
higher prices for inputs because they are unlucky, not because they are purchasing better
inputs or because of changes in demand or conduct conditions. In our Monte Carlo, even
when these prices are completely orthogonal to productivity, the DLW estimator’s bias is
still roughly four times the bias of our CRS estimator when the prices are unobserved.

Our paper contributes to the recent literature on market power in the macroeconomy. DLE
uses the DLW estimator to argue that the average markup has risen precipitously since
1980, concentrated in the upper tail of mega markup firms. Under our CRS assumption, our
analysis indicates that half of this upper tail skewness is the spurious outcome of nonidentifi-
cation. Our finding helps rationalize the differences between the firm-level markup estimates
of DLE and the industry-level markup estimates of Hall. The latter paper updates the Hall

4These models evolved from recent work in international economics that quantifies markup dispersion
and misallocation in response to trade shocks. They do so by specifying parametric models of consumer
demand and firm conduct. See Epifani and Gancia (2011), Edmond, Midrigan, and Xu (2015), Edmond
et al. (2018), and Peters (2018).
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1988 analysis to find a modest rise in markups driven by finance, utilities, and healthcare,
with little relation to the share of mega-firms within industries. We would like to emphasize
that low skewness in markups is not inconsistent with high skewness in size or productivity
(?). For example, in the Melitz and Ottaviano (2008) model of heterogeneous firms, larger
and more productive firms charge lower markups. This feature is an endogenous outcome of
competitive pressures dominating a selection effect of lower marginal costs.

Our paper also contributes to the industrial organization literature on identifying technology.
Identifying the flexible input elasticity is notoriously difficult: Both traditional and modern
production function estimators suffer from a classic simultaneity problem called transmission
bias.5 The same optimization conditions used to recover markups imply firms endogenously
choose flexible inputs depending on their productivity. Consequently, when flexible input
expenditure is high, we cannot disentangle whether it is because the output elasticity is large,
or because the firm is very productive. Gandhi, Navarro, and Rivers (2017) (GNR) formalize
this intuition in a general setting by proving that the elasticity is not identified under the
standard restrictions in the proxy variable literature. Because identifying markups relies on
identifying the elasticity, markups are not identified. We offer a starting point for solving
this fundamental problem by reducing it to questions on the RTS of production.

Section 1 reviews the proxy variable production model and the identification problem of the
flexible input elasticity. Sections 2 presents our solution in the Cobb-Douglas and general
nonparametric cases. In Section 3, we offer explicit estimation algorithms for the commonly
used Cobb-Douglas and translog production specifications. Sections 4 and 5 compare our
estimator with the standard DLW estimator in Monte Carlo and public-firm data. We discuss
extensions using variable RTS and partial identification restrictions in Section 6. Section 7
concludes with suggestions for future econometric research on measuring markups.

1 The Inconsistency of the Proxy Model
In this section, we demonstrate that the proxy model is not identified under the assumptions
required to estimate markups. But more importantly, we find a way out by pinpointing
the exact source of underidentification: the returns to scale is not identified. This opens a
path forward to resolve the identification problem that we pursue in the later sections of this
paper.

Recovering identification of the production approach to markup estimation is particularly
important given the research agenda on market power in the macroeconomy. This approach
is agnostic about consumer demand and firm conduct, and is therefore compatible with a
large class of models with imperfect competition. Moreover, it scales well to multi-industry
settings where the demand approach to markup estimation is infeasible because of data
requirements. Finally, this approach allows us to study firm heterogeneity, which is critical
for understanding the underlying mechanisms of production.

Let qt be log output, and (vt, kt) be the log of flexible inputs and capital in period t. Denote
5Marschak and Andrews (1944) first articulated this problem in a general setting. Hoch (1958) developed

it further for Cobb-Douglas production functions, coining the “transmit” terminology.
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the level of these variables by their respective capitalizations. Flexible inputs vt are variable
and static: they contribute to time t’s production, but have no direct effect on the firm’s
future decisions. Capital kt is fixed and dynamic: it can not be adjusted in period t (the
firm chooses it in an earlier period), but it affects period t output (and potentially output
in other periods).6 Consequently, the firm treats the capital stock kt as a state variable at
time t (chosen before productivity innovations are known to the firm). The data are inputs
and output over the panel t = 1, . . . T ,

{(qt, vt, kt)}Tt=1 (1)

The joint distribution of the data in the underlying population of firms is identified in the
data.

The proxy approach to production function estimation relates these data to a model of
production that consists of three parts. We label this set of assumptions the proxy structure:

1. Output and inputs in each period are related in the following way:

qt = f (vt, kt) + at + εt (2)

where f is the production function characterizing the technology of an industry, at is
a productivity shock that the firm observes before making its period t input decisions,
and εt is an ex-post shock that is independent of the firm’s input decisions, so that
E [εt|vt, kt] = 0.

2. Productivity follows a first-order Markov process:

at = g (at−1) + ηt, (3)

where the shocks ηt are uncorrelated with inputs chosen before period t, so:

E [ηt|kt, vt−1, kt−1, . . . ] = 0, (4)

where the ellipses represent all other lags of the inputs.

3. Flexible input demand has the form vt = v (at, kt) where v(·, kt) is strictly increasing
in at.7

The model is called the proxy structure because this last assumption implies productivity
can be proxied by observable inputs, at = v−1 (vt, kt) = a(vt, kt).

1.1 Nonidentification
Gandhi, Navarro, and Rivers (2017) show that this structure is insufficient to identify f .
For any proposed production function f , there exists an f̃ that is observationally equivalent:
both f and f̃ are consistent with the proxy structure and generate the same joint distribution

6More generally, kt can be a vector of inputs each of which is not flexible, i.e. either fixed, dynamic, or
both.

7For details on how these assumptions change with deflated sales data, see Appendix A.
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of observables. Estimators using only these restrictions are inconsistent, making the resulting
estimates difficult to interpret.

GNR also shows that if the flexible input elasticity fv (vt, kt) were identified, then the pro-
duction function f would be identified over the support of the data given the proxy structure.
The source of nonidentification is the flexible input elasticity, or as we’ll soon prove is equiv-
alent, the returns to scale (the sum of the flexible input elasticity and the capital elasticity).

The envelope theorem applied to the variable cost minimization problem implies that marginal
cost is

MC = WV

Q
× 1
fv

=⇒ µ = P

MC
= PQ

WV
× fv (5)

where W is the price of the flexible input V . GNR uses the relationship (5) combined
with assuming the markup µ to identify the production function (they assume P = MC in
their main specification). If the markup is known, then the flexible input elasticities can be
recovered, and this identifies the remaining parameters of the production function under the
proxy structure.

The DLW estimator is remarkably powerful in its generality,8 but it also prevents us from
using the GNR solution to the GNR problem. We cannot use the GNR solution because it
assumes the markup which is our object of interest. We need another structural assumption
to identify the output elasticity of the flexible input, and therefore the markup.

1.2 Partial Identification
While the proxy structure alone does not point identify the production function in the
presence of flexible inputs, Flynn and Gandhi (2018) show that it does partially identify
the production function by offering lower and upper bounds on the flexible input elasticity.
In our empirical analysis, we use these bounds as evaluation criteria for our CRS estimator
against the DLW estimator.

The markup upper bound under the proxy structure is the markup we would compute if
we estimated the production function via OLS, ignoring endogeneity. The proxy structure
tells us that flexible input demand is strictly increasing in productivity: at = v−1 (vt, kt) =
a(vt, kt), and av > 0. As a consequence, the inverse flexible input demand is increasing
as well, so that ∂

∂vt
E [qt|vt, kt] = fv + av > fv. This condition offers an upper bound on

the flexible input elasticity, and so an upper bound on markups: PQ
WV
× ∂

∂vt
E [qt|vt, kt] >

PQ
WV
× fv = µ. Ignoring transmission bias by estimating the production function via OLS

will return estimates that are biased strictly upwards under the proxy structure

The markup lower bound under the proxy structure is even simpler: markups can never fall
below 1. The assumption that the relevant input is variable and chosen without dynamic

8While the proxy assumption was originally developed in a model of price-taking firms, Flynn (2019)
shows that it holds so long as firms face a demand function in which MR(Q)*Q is an increasing function
of Q, which implies the profit maximization problem with zero costs has no interior solution. Among many
other models, this condition is true for perfect competition; or monopolistic competition facing constant
elasticity or logit demand.
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consequence rules out typical theoretical justifications for markups below 1, such as dynamic
pricing. In other words, to measure markups from the firm’s first order condition as in Hall
(1988), we must assume away mechanisms that cause markups to fall below 1. This lower
bound is a useful diagnostic for estimation output. For example, Hall (2018) evaluates the
original Hall (1988) method in updated data by interpreting markups below 1 as sampling
error.

2 Nonparametric Identification with Returns to Scale
We resolve the same identification problem addressed in Gandhi, Navarro, and Rivers (2017),
but instead of assuming we know the markup, we assume that we know the returns to scale
of the production function. We assume a returns to scale of 1 (i.e. CRS) both for ease
of exposition, and because that is what we use in our empirical application. However, all
arguments follow for any known returns to scale. We extend our results in Section 6 to allow
for unknown variation in RTS through fixed inputs.

CRS identifies the production function in the following way:

1. For each flexible input elasticity, there exists a unique production function that both
has that elasticity and satisfies the proxy assumptions (GNR).

2. If the nonflexible input elasticities are known, then the flexible input elasticity is iden-
tified under CRS because RTS is the sum of the output elasticities. For each set of
nonflexible input elasticities, there exists a unique production function.

Consequently, we have a fixed point problem in fv:

fv (v, k) = 1− fk (v, k; fv) (6)

We show that the fixed point problem has a unique solution.

Theorem 1 presents our general, nonparametric identification result. Aside from a known
returns to scale, we must also make a technical assumption about the distribution of flexible
inputs vt conditional on current fixed inputs kt. The assumption requires that the parts of
vt that are not collinear with kt are correlated with kt. For example, identification fails if
vt = kt + εt, where εt is uncorrelated with kt.

Theorem 1. If, for any function ∆ (v, k) such that for almost all (v, k),

−E
[
∂

∂k
E
[∫ vt

v
∆ (v′, kt) dv′|kt = k, vt−1, kt−1

]]
+
∫ v

v

∂

∂k
∆ (v′, k) dv′ + ∆ (v, k) = 0 (7)

it must be the case that
∫
|∆ (v, k) | = 0. Then the proxy structure implies either:

1. There exists no production function in the set identified by the proxy structure with
constant returns to scale.
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2. For any two production functions with constant returns to scale in the identified set,
f 1 and f 0, ∫

v

∫
k
|
(
f 1 − f 0

)
(v, k) |dkdv = 0. (8)

Proof. For proof, see Appendix A.

We can use Theorem 1 to generate identification conditions which are easy-to-check (and
empirically testable) for particular functional form choices for the production function. To
do so, replace ∆ with the functional form of fv to recover what the identification assumption
means for that functional form.

The following result is useful for understanding what the identification condition means in
the context of particular functional forms:

Result 1. If ∆ (v, k) satisfies,

−E
[
∂

∂k
E
[∫ vt

v
∆ (v′, kt) dv′|kt = k, vt−1, kt−1

]]
+
∫ v

v

∂

∂k
∆ (v′, k) dv′ + ∆ (v, k) = 0, (9)

then it must be the case that ∆ is homogenous of degree zero (regardless of data generating
process), i.e.

∆v + ∆k = 0 (10)

Proof. Differentiate the identification condition with respect to v.

This result is useful for narrowing down the kind of production functions we have to consider
as potentially part of the identified set. We present more explicit identifying conditions
derived from the general condition above for two common functional form choices: Cobb-
Douglas and translog production functions. Both make use of Result 1.

2.1 Illustrating Identification with the Cobb-Douglas Production
Function

For illustration, consider identification for Cobb-Douglas production functions. When the
production function is Cobb-Douglas, we have the following equations from the proxy struc-
ture introduced above,

qt = θvvt + θkkt + at + εt (11)
at = g (at−1) + ηt (12)

E [ηt|kt, vt−1, kt−1, . . . ] = 0 (13)
E [εt|vt, kt] = 0 (14)
at = a (vt, kt) (15)
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Constant returns to scale removes one parameter from the problem so the number of param-
eters is equal to the number of instruments (the only instrument with power is capital). We
can write the production equation as

qt = (1− θv) kt + θvvt + at + εt (16)
=⇒ qt − kt = θv (vt − kt) + g (at−1) + ηt + εt (17)

= θv (vt − kt) + g (a (kt−1, vt−1)) + ηt + εt (18)
(19)

Applying the moment restrictions we have from the proxy structure, we have

E [qt − kt|kt, vt−1, kt−1] = θv (E [vt|kt, vt−1, kt−1]− kt) + g (a (kt−1, vt−1)) ,

The production function is identified if Assumption 1 holds:

Assumption 1. There exists (kt, kt−1, vt−1) such that,
∂

∂kt
E [vt|kt, kt−1, vt−1] 6= 1. (20)

Choose a (kt, kt−1, vt−1) such that ∂E [vt|kt, kt−1, vt−1] /∂kt 6= 1. Then,
∂

∂kt
E [qt − kt|kt, vt−1, kt−1] = θv

(
∂

∂kt
E [vt|kt, kt−1, vt−1]− 1

)
, (21)

and θv is identified. Assumption 1 is exactly equivalent to the general identification condition
of Theorem 1 if ∆ is a constant, as it is in the Cobb Douglas production function.

2.2 Illustrating Identification with the Translog Production Func-
tion

In the translog functional form, ∆ (v, k) = δ0 + δvv + δkk. The identification condition is
that, there does not exist δ 6= 0 such that

δ0 ×
{
−E

[
∂

∂k
E [v|kt = k, vt−1, kt−1]

]
+ 1

}
(22)

+δv ×
{
−1

2E
[
∂

∂k
E
[
v2
t |kt = k, vt−1, kt−1

]]
+ v

}
(23)

+δk ×
{
−E

[
∂

∂k
(kE [v − v|kt = k, vt−1, kt−1])

]
+ (v − v) + k

}
= 0 (24)

δ0u0 + δvuv + δkuk = 0 (25)

If there exist at least three (v, k) such that the three vectors (u0, uv, uk) are linearly inde-
pendent, then the only δ that satisfies the equation is δ = 0. A sufficient condition is:

E
[
u (v, k)u (v, k)>

]
δ = 0 =⇒ δ = 0 if E

[
u (v, k)u (v, k)>

]
is invertible.
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3 Estimators for Common Functional Forms
In estimation, researchers can use standard proxy estimators with the additional constraint
that the production function has constant returns to scale. For simple production functions,
it is straightforward to derive closed form conditions. For more complex production functions,
researchers can equivalently add the constant returns to scale restriction with additional
moment restrictions in the generalized method of moments problem. Linear-in-parameters
functional forms such as Cobb-Douglas and translog have particularly straightforward esti-
mators. In this section, we offer a guide on how to apply our method to Cobb-Douglas and
translog production functions in the framework of Ackerberg et al. (2015) used in De Loecker
and Warzynski (2012). Appendix C presents the method for general linear-in-parameters
production functions.

In all cases, the goal is to recover the flexible input elasticity fv to then apply the optimization
condition in 5. Note that since the firm does not see εt before their choice of vt, we must
apply expected output to the markup equation, i.e. exp(qt − εt) instead of exp(qt) = Qt.

3.1 Cobb-Douglas Production Functions
The Cobb-Douglas production with constant returns to scale can be written as,

qt = θvvt + θkkt + at + εt = (1− θk)vt + θkkt + at + εt (26)

Estimation uses the standard proxy estimator in Ackerberg et al. (2015):

1. Impose the CRS parameter restrictions on the production function as above.

2. Regress qt on a specified transformation of (vt, kt) to estimate φ (vt, kt) = E [qt|vt, kt]:

qt = f + at + εt = φ (vt, kt) + εt (27)

3. For a given guess of θ, write at = φ (vt, kt)− f(vt, kt).

4. Regress at on a specified transformation of at−1 to estimate g(at−1) = E[at|at−1]:

at = g (at−1) + ηt (28)

5. Solve the moment condition for θ:
1
n

∑
it

kitηit (θ) = 0 (29)

Instead of the first step, the researcher may begin with the second step, but add the additional
moment restriction:

1
n

∑
it

RTSit(θ)− 1 = 0
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3.2 Translog Production Functions
For the translog production function, we have:

qt = θvvt + θkkt + θvvv
2
t + θkkk

2
t + θvkvtkt + at + εt

Constant returns to scale implies:

fv + fk = θv + 2θvvv + θvkk + θk + 2θkkk + θvkv = 1

which gives the following parameter restrictions:

θk + θv = 1
2θvv + θvk = 0
θvk + 2θkk = 0

Hence the translog production function has three parameters after imposing CRS, and re-
searchers can proceed following the exact same steps as above.

Alternatively, if the researcher may skip the first step by adding the additional moment
restrictions:

1
n

∑
it vit(RTSit(θ)− 1) = 0

1
n

∑
it kit(RTSit(θ)− 1) = 0

1
n

∑
itRTSit(θ)− 1 = 0

4 Sizing the Problem: US Public Firm Markups
We apply our approach to the Fundamental Annual Compustat file from Wharton Research
Data Services. These data span from 1951 to 2017 and cover private sector firms with public
equity or debt. Compustat contains firm-level balance sheet information on: sales; operating
expenses (OPEX); cost of goods sold (COGS); selling, general, and administrative expenses
(SGA); capital (via net and gross plants, property, and equipment (PPE)); and industry
classification.

To select domestic firms, we use standard industry format observations in USD with Foreign
Incorporation Codes (FIC) in the US. For data quality, we include only observations with
positive assets, sales, OPEX, and gross PPE. To avoid picking up merger and acquisition
distortions, we exclude observations in which acquisitions are larger than 5 percent of total
assets. Just under 9 percent of the sample are missing information on sales, OPEX, gross
PPE, or net PPE, within a given firm. We replace these missing observations with a linear
interpolation of their neighboring values.

For industry classifications, Compustat includes only the current SIC code and historical
SIC codes starting in 1987. We use historical SIC codes when available. We backfill the
industry classification with the first historical SIC code, and replace any remaining missing
observations with the current SIC code. To better balance the number of observations in
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each industry which will be useful for later estimation, we map these SIC codes to the Fama-
French 49 industry groups. This mapping is standard in the finance and accounting literature,
and roughly combines similar industries that have few observations, and separates industries
that have many observations into subindustries. Finally, we exclude utilities (Fama-French
49 code 31) because they are heavily regulated on prices, and financials (Fama-French 49
codes 45 to 49) because their balance sheets are dramatically different from other firms.

To get a quantity measure of sales and flexible inputs, we deflate sales, OPEX, COGS, and
SGA by the GDP deflator (NIPA Table 1.1.9 Line 1).

As is standard in the production function estimation literature, we construct our measure
of capital using the perpetual inventory method. Specifically, we initialize the capital stock
using the first available entry of gross PPE. We then iterate forward on capital using the
accumulation equation Kit = Kit−1 + Iit−1 − δKit−1, where we compute net investment
Iit−1 − δKit−1 using changes to net PPE. Since we want a quantity measure of the capital
stock, we deflate net investment by the nonresidential fixed investment deflator (NIPA Table
1.1.9 Line 9).

Our goal in this paper is not to determine the appropriate specification for production tech-
nology using Compustat data. For more information on this debate, see Traina (2018) and
Diez et al. (2018). Rather, we believe it’s important to evaluate the impact of nonidenti-
fication on a variety of applied specifications. We will focus on the simplest specification
(Cobb-Douglas technology with flexible OPEX), but also present results for three others
when relevant. In total, we vary {Cobb-Douglas; translog} x {OPEX and PPE; COGS,
SGA, and PPE}. Our estimator typically increasingly outperforms as we increase the com-
plexity of the specification.

Denote x = logOPEX, c = logCOGS, s = logSGA, and k = logPPE. Our specifications
for the production function are:

CD-OPEX :θxx+ θkk (30)
CD-COGS :θcc+ θss+ θkk (31)
TL-OPEX :θxx+ θkk + θxxx

2 + θkkk
2 + θxkxk (32)

TL-COGS :θcc+ θss+ θkk + θccc
2 + θsss

2 + θkkk
2 + θcscs+ θsksk + θckck (33)

Since we will proceed by imposing constant returns to scale with our benchmark estimator,
we first check whether this assumption is reasonable in this particular data setting. To do
so, we follow Basu and Fernald (1997), which recommends the following procedure:

1. Generate the cost share of total costs for each input.

2. Generate a composite input growth index that sums each input’s growth by its lagged
cost share.

3. Regress output growth on this composite input growth; the coefficient is an estimate
of the returns to scale.
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Figure 1: Basu-Fernald Returns to Scale Estimates

Source: Data from Compustat, estimates from authors’ calculations.

Although this algorithm does not identify the true returns to scale under typical conditions,
it does offer an approximation that has been used in practice (e.g. Syverson (2004)). We
follow the procedure for each industry in each year to produce a distribution of returns to
scale estimates. Figure 2 collects the results. The left panel presents the distribution of
scale elasticity estimates, and the right panel shows the time series of their cross-sectional
averages.

The left panel shows that the typical industry-year exhibits constant or slightly increasing
returns to scale, with a mean of 1.04. There is some variation away from our CRS benchmark,
with a standard deviation of 0.22, which likely represents a combination of true differences
in scale elasticities, sampling error, and misspecification. The right panel shows that there
is no discernible time trend in these estimates. Regressing our scale elasticity estimates on
a linear time trend returns a coefficient that is statistically indistinguishable from zero.

To level the playing field away from obvious outliers, the rest of the paper subsets on markups
between 0.1 and 10, which we consider to be a priori reasonable bounds for anomalies.

4.1 Heterogeneous Markups
To give the DLW estimator its best shot, we move forward with the simplest specification
(CD-OPEX). Figure 6 shows the differences in markup distribution by estimator. The left
panel measures the cross-sectional standard deviation, whereas the right panel measures the
cross-sectional skewness (both weighted by OPEX). In the left panel, the blue line is stable at
about 0.10 from 1951 to 1970, when it rises steadily to about 0.20 in 2010. This distribution
occurs around a mean of about 1.15 throughout the sample. The rise is notably linear, and
there are no otherwise obvious patterns beforehand.

The red line in the left panel is similar in the qualitative pattern, yet at a different y-
axis scale. In this case, the blue line starts relatively flat between 0.15 and 0.20 from
1951 to 1980, when it also rises to about 0.30 in 2017. Although the fact that it captures
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Figure 2: Variation in Markups by Estimator

Source: Data from Compustat, estimates from authors’ calculations.

a comparable pattern is reassuring that we’re measuring important underlying economic
phenomena, the quantification deviates from our identified model in two important ways.
First, it meaningfully overstates the level of dispersion, particularly in the earlier parts of
the sample by about 50 percent. Second, because of this overstatement, it significantly
underestimates the relative size of the increase by about 50 percent. The right panel shows
the cross-sectional skewness of the two estimators. Our CRS estimator is a bit more volatile
year-to-year, but typically at a lower level than the DLW estimator. The two estimators do
not exhibit any time series trend.

4.2 How Costly is Nonidentification?
To benchmark how significant these results are, we use the sufficient statistic approach
described in Peters (2018) to estimate the corresponding implied output losses from mis-
allocation. The model builds on the canonical Klette and Kortum (2004) framework by
adding imperfect competition in product markets to generate variable markups. Given a
Pareto distribution of markups, we can approximate the losses to output and the labor share
based on the Pareto parameter. Hence to match our estimates to the model, we fit a Pareto
distribution of markups each year, and use the model to back out the implied losses.

Figure 7 reports our results. Here we see the stark differences in welfare evaluation and
macroeconomic implications based on nonidentification. Our identified estimator shows out-
put losses hovering just above 0.5 percent annually, then rising to 1 percent today. For
reference, 1 percent of US output today is about $200B, about half the budget of the US
Department of Defense. While this statistic is large, the DLW estimator implies output
losses of roughly twice the scale. The labor share comparison is less stark; we estimate a
labor share that’s about 11 percent lower than an idealized benchmark because of markups,
whereas the DLW approach estimates about 17 percent.
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Figure 3: The Cost of Markups

Source: Data from Compustat, estimates from authors’ calculations using the sufficient statistics
of Peters (2018).
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Table 1: Specification Error using Bounds, Raw Percent
Specification Too Low Too High
Form Flex FGT DLW FGT DLW
CD OPEX 0.16 0.04 0.03 0.55
CD COGS 0.31 0.35 0.41 0.42
TL OPEX 0.18 0.51 0.62 0.07
TL COGS 0.41 0.00 0.00 0.45

Table 2: Specification Error using Bounds, Average Violation
Specification Too Low Too High
Form Flex FGT DLW FGT DLW
CD OPEX 0.02 0.00 0.00 0.06
CD COGS 0.04 0.06 0.11 0.02
TL OPEX 0.02 4.99 0.06 0.23
TL COGS 0.13 0.00 0.00 0.27

4.3 Specification Testing with Partial Identification Bounds
Table 1 summarizes how the estimators perform relative to the partial identification bounds
introduced in Section 1.2. Each row represents a different production function specification:
{Cobb-Douglas; translog} x {OPEX and PPE; COGS, SGA, and PPE}. The “Too Low”
columns report the share of markups below the lower bound of 1 under each estimator,
whereas the “Too High” columns report the share above the upper bound. We aggregate
these shares on a cost-weighted basis, reasoning that the flexible input cost is the relevant
weight for welfare calculations per Edmond et al. (2018).

Our estimator typically performs substantially better at not exceeding the upper bound, and
performs slightly worse at not falling below the lower bound. However, this takeaway varies
across production function specification. While Table 3 shows how often markups fall outside
the partial identification bounds, it does not show how substantial these violations are. To
check the quantitative importance of these bound violations, we next look at the average
bias they induce. We measure each markup estimate’s distance past the bound, setting
within-bound estimates to zero. Table 4 presents the averages of these bound violations.

While our estimator still has some notable biases, a key feature is that they are not substan-
tial. The largest average bias produced is 0.13, and a typical bias is about 0.05. In contrast,
the DLW estimator produces a dispersed set of biases, including some very large ones.

Tables 1 and 2 do not show the economic significance of this evaluation in levels. Intuitively,
an estimator that exceeds an upper bound of 1.5 is meaningfully different from an estimator
that exceeds an upper bound of 5. For all but the TL-COGS specification, the bounds are
reasonably tight (below 1.5 on average); for TL-COGS, however, the bounds exceed 5. By
comparison, the seminal paper Chaloupka (1991) reports a demand elasticity for cigarette
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Figure 4: The Level of Markups by Estimator

Source: Data from Compustat, estimates from authors’ calculations.

smokers of about -0.5, which implies a monopolist markup of 2.

4.4 Stability Across Specifications
Motivated by the partial identification results, we next explore the stability of the estimators
by looking at how their resultant markups change across the different production technology
specifications. Figure 3 presents the time series of aggregate markup estimates for the four
considered in this paper. The left panel is the simplest specification – Cobb-Douglas OPEX
as used in Traina (2018). The right panel is the most complex specification – translog COGS-
SGA, similar to the robustness section of Diez et al. (2018). The blue line represents our
CRS estimator, the red line represents the DLW estimator, and the green line represents
the upper bound implied by Flynn (2019) and Flynn and Gandhi (2018). As before, these
estimates use flexible input cost-weights to aggregate.

As hinted by the earlier tables, the DLW estimator is typically close to or exceeds the
theoretical upper bound. In the left panel, the red line is about 0.05 higher than the green
line, showing that the DLW estimator’s upward bias completely swamps any downward bias.
More notably for these figures, however, is just how high the theoretical upper bound can
reach. In the right panel, both the red and green lines fluctuate between 6 and 7, much
higher than in the left panel and more generally implausibly high. Our CRS estimator, by
comparison, looks about the same across specifications.

Figure 4 confirms this stability by collecting our results across the four specifications. Our
estimator is remarkably stable to different specifications of the production function. The
differences in aggregate means are low, typically within 0.05 to 0.10.

These estimates are at the aggregate level, however, which is more useful for stylized facts
but less useful for firm-level analyses. To quantify how much the markup estimates vary at
the micro level, we calculate the standard deviation across the four specifications for each
estimator. We therefore have a dispersion estimate for each firm-year observation. Figure 5
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Figure 5: The Stability of the FGT Estimator

Source: Data from Compustat, estimates from authors’ calculations.
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Figure 6: How Much Do Firm-Level Markups Vary by Specification?

Source: Data from Compustat, estimates from authors’ calculations.

presents the distribution of these dispersion estimates for the two estimators.

Our estimator typically produces markups that are robust to alternative production tech-
nology specifications. The average standard deviation is 0.24, against 1.56 for the DLW
estimator. And recall that these statistics are after truncating the distributions at 0.1 and
10 to remove anomalous outliers, which plague the DLW but not our CRS estimator.

5 Sizing the Problem: A Calibrated Macro Monte Carlo
In this section, we use a Monte Carlo experiment to demonstrate what can go wrong if
we ignore the identification problem and measure markups using lagged flexible inputs as
instruments. By comparing our estimator to the De Loecker and Warzynski (2012) estimator,
we show that inference on the pattern of markups in an industry can be misleading if we
do not deal with the identification problem. We also show that reasonable deviations from
constant returns to scale (where the true returns to scale is not 1 but we assume it is) have
less effect on inference than ignoring the identification problem entirely. If we do not believe
that the returns to scale are far from 1, these results suggest that small deviations from
constant returns to scale will not overly affect inference.

We construct a data generating process that is tractable to compute and resembles standard
macro models and parameter choices. We compute the objects of interest in our actual
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application (aggregate cost-weighted markups) and study how well our estimator compares
to the status quo DLW estimator used in the literature. In our data generating process,
there are several industries each of which faces its own constant elasticity demand curve
(the representative consumer has quasi-linear preferences). Each industry is served by a
monopolist firm. We observe many markets like this giving us a number of firms to use in
each industry to estimate the production function. There is a markup distribution because
each industry has a different constant elasticity demand curve.

Within each industry, a monopolist solves the following dynamic programming problem,

M (A,K) = max
V,X,QE

Qη+1
E E [exp ((η + 1) ε)]−WXX −WV V + βE

[
M
(
A0.9ν, δ ×K +X

)]
(34)

st: A× V θKγ ≥ QE,
(35)

where the expectation is over ν, a shock to productivity. The dynamic programming problem
can be solved analytically, so it is straightforward to draw data from the data generating
process.

We parametrize our experiment at the following parameter values (for a given θ , γ, and η),9

Q = QE × exp (ε) , Q = V θKγA, log ν ∼ N (0, 0.25) (36)
β = 0.96, δ = 0.9, WX = 1, WV = 1 (37)

ε ∼ N (0, 0.5) . (38)

At these parameter values, the true markup within an industry is always −η−1. We simulate
firm decisions within each of 20 industries in a population of 200 markets for 10 time periods
(each market has a different firm being the monopolist for that industry). Each firm’s initial
capital and productivity comes from the following distribution:

log (K0 − 1) ∼ N (0, 1) (39)
logA0 ∼ N (0, 1) . (40)

We estimate the model using data from t = 3 to t = 10 (because the DLW estimator will
need two lags of flexible inputs).

Our goal is to compare our CRS estimator against the DLW estimator, which is currently
the literature’s standard for markup estimation. We study how well each method does at
estimating average markups and the standard deviation of markups. Table 3 reports the
bias of each method across 10000 Monte Carlo simulations for different values of (θ, γ), some
of which satisfy θ + γ = 1 and some of which do not.

To be precise, we use the same proxy assumptions for both the DLW estimator and our
proposed estimator based on constant returns to scale,

qit = θvit + γkit + ait + εit (41)
ait = ρait−1 + log νit. (42)

9For full details on the solution to the dynamic programming problem, see Appendix D.
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Table 3: Monte Carlo Results
Percent Bias in Markup Statistics

Mean Std. Dev.
θ γ FGT DLW FGT DLW

0.865 0.135 0.44% 8.97% 0.35% 5.65%
[0.7785, 0.9515] [0.1215, 0.1485] 2.08% 9.79% 0.53% 5.88%

FGT refers to the method proposed in this paper. DLW refers to applying the proxy method using
lagged flexible inputs to instrument for current flexible inputs. Elasticity intervals are random
variables drawn from a uniform distribution for each industry.

What is different between the two models are the moments used in estimation. The identi-
fying moments for both models are,

DLW Moments: E
[(

kit
vit−2

)
log νit

]
= 0 (43)

FGT Moments: E [kit log νit] = 1− θ − γ = 0 (44)

We draw the demand elasticity parameter for each industry from the uniform distribution
on [−0.5,−0.2]. We use the same parameters for each of the twenty industries in all Monte
Carlo experiments.

Table 3 collects the results of our Monte Carlo experiment. Each row represents a different
parametrization of the flexible input elasticity θ and the capital elasticity γ. In the first row,
our estimator is the correct specification, constant returns to scale, with the flexible output
elasticity chosen to match Edmond et al. (2018). In the second row, we add some noise to
the returns to scale so that some industries has increasing returns to scale and others have
decreasing returns to the scale. The second row demonstrates that our results do not hinge
on returns to scale being exactly 1. The first set of columns presents the average bias in
the level of markups (weighted by variable input cost) as a percentage of the true value;
the second set of columns presents the average bias in the dispersion of markups (weighted
by variable input cost) also as a percentage of the true value. We measure bias relative to
the estimator we would use if we knew the true production function (to avoid measuring as
bias the fact that we only observe ex-post output instead of ex-ante output) — that is, we
apply the markup formula replacing the flexible input elasticity with the true flexible input
elasticity.

We find the bias from ignoring the identification problem is about five as large as the bias
from being slightly wrong about the returns to scale in the industry under misspecification
of the returns to scale. The bias of the DLW cost-weighted markup estimate is 9.0 percent
under CRS and 9.8 percent under CRS-plus-noise.. In contrast, the bias from our CRS
estimator is small, ranging from 0.44 percent under correct specification to 2.08 percent
under misspecification. Our estimate of the standard deviation of markups is also slightly
better — even under misspecification (when the RTS is not one) — and recall: the standard
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Figure 7: Markup Distribution by Estimator

Source: Data from a specified generating process closely following Edmond et al. (2018),
estimates from authors’ calculations. The vertical line marks the true average.

deviations are around two different means so the distribution of markups is much better
captured using our approach.

Figure 7 shows the full distribution of cost-weighted average markup estimates for both the
DLW and our CRS estimators under constant returns to scale for a single industry. This
graph shows visually that the DLW estimator is not identified because the distribution is
bi-modal. In contrast, our CRS estimator is normally-distributed around the true value.

5.1 Input Price Variation Is Not a (Practical) Solution
De Loecker and Warzynski (2012) (and more recent work by De Loecker and Eeckhout 2017
and Traina (2018)) uses lags of flexible inputs to instrument for current flexible inputs. That
paper’s argument is that lags of flexible inputs are correlated with the price of the firm’s
inputs which will shift the distribution of current inputs. And, since lagged inputs were
chosen in the past, they are uncorrelated with later shocks to productivity. Unfortunately,
the use of lagged inputs and appeal to unobserved input price variation does not overcome
the GNR identification problem.

The basic reason instrumental variable methods based on unobserved input price variation
(or other unobserved firm heterogeneity) fail is that either:
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1. There is input price variation so we have an omitted variable (input price) in the resid-
ual because input price should be included in the proxy function. So our instrument
is correlated with the residual (our instrument is invalid).

2. There is no input-price variation so lagged flexible inputs have no power (our instru-
ment is weak).

In the following section, we establish this point.

If there is no input price variation, then Gandhi et al. (2017) have already shown that the
model is not identified as we review in Section 1. The problem is fundamental: for lagged
inputs to satisfy the exclusion restriction, they must be uncorrelated with ηit, but for lagged
inputs to have strength as instruments, they must be correlated with ηit.

Now consider the case where input prices vary by firm, yielding another firm-specific state
variable aside from ηit that might shift vit. There remains two general problems: (1) the
nature of the input price variation required is more demanding than we might intuit (it is
not enough that input prices vary by firm); and (2) the nature of the data required is more
demanding than we might see in practice (we must observe the firm-level input prices).

First, suppose input prices vary across firms, and we observe these input prices. In that
case, flexible input demand is,

vt = vt (at, kt, wt) = vt (g (vt−1, kt−1, wt−1) + ηt, kt, wt) , (45)

where wt is the log price of flexible inputs.

The first question for identification is whether vt−2 has any strength as an instrument; is
it correlated with vt conditional on (kt, vt−1, kt−1, wt−1)? Aside from the variables that are
conditioned on, there are two state variables that affect flexible input demand: (ηt, wt). By
the proxy structure, vt−2 is not correlated with ηt, so for the instrument to have any strength,
it must be correlated with wt, conditional on (kt, vt−1, kt−1, wt−1).

To see why this is a stronger condition than we might think, suppose wt is an AR(1) process,

wit = ρwwit−1 + Innovationit, Innovationit ∼ N (0, 1) . (46)

where the innovation is a shock, independent of any decisions the firm makes. Then, con-
ditional on wit−1, the only variation in wit is through the innovation term which is entirely
independent of vit−2. If this model is the data generating process, then vit−2 has no strength
as an instrument. Similarly, if wit were just fluctuations around a firm-specific mean —
wit = δi + fluctuationit, where the fluctuations are iid — the model would not be identified.

What we need for vit−2 to be an instrument is for there to be a firm-specific component of
the wage process. For example,
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wit = ρwwit−1 + ξi + innovationit. (47)

Or that wt is at least an AR(2) process; we need an underlying state variable that affects
wit aside from wit−1 for which vit−2 can proxy.

The second question for identification is whether vt−2 is a valid instrument, i.e. whether
its variation is actually exogenous. This question might seem irrelevant because we have
already assumed vt−2 is uncorrelated with the innovation term in the proxy structure we laid
out above. But this structure is justified within a model where inputs are homogeneous and
input price variation suggests input quality variation. If input price variation does reflect
input quality variation, then innovations in the wage process are related to innovations in
the productivity process—when wages go up, it is because the firm is using more productive
inputs—in which case vt−2 is correlated with ηt.

But the larger issue is that we often do not observe wt. If input prices vary across firms but
we do not observe this variation, then using twice-lagged10 flexible inputs as instruments will
not work. In this case, the proxy function is:

vt = vt (at, kt, wt) =⇒ at = v−1
t (vt, kt, wt) (48)

=⇒ qt = f (vt, kt) + g (vt−1, kt−1, wt−1) + ηt + εt. (49)

If we do not observe wt−1 and we estimate the above model omitting wt−1, we introduce
an omitted variable bias. So the De Loecker and Warzynski (2012) approach requires that
we observe wages, which is typically hard to observe for intermediate inputs. In fact, the
reason to use lagged flexible inputs as the instrument is that we do not observe firm wages—
otherwise, if we believe wage variation is excluded, we could just use firm-level wages (wit)
directly as the instrument and it would likely be a stronger instrument than indirectly
proxying wit via vit−2.

We also compare the two estimators when we introduce firm-level input price variation to
the data-generating process. Both estimators are misspecified under this data generating
process, but the DLW instruments are no longer weak because lagged inputs are correlated
with input price variation; the bias shifts from being a result of the instruments having no
power to an omitted variable bias. The data generating process we use for this Monte Carlo
experiment is the same as above except that,

WV ∼ Uniform(1− κ, 1 + κ),

where, previously, we had set WV = 1. In Table 4 we present these results. The structure of
the table is the same as before, but now with input price variation.

10De Loecker and Warzynski (2012) use a value-added production function and treat labor as a flexible
input. In that case, labor does not appear in the material demand function, so first-lagged labor is excluded.
But when materials are the flexible input and included in the production function, first-lagged materials are
not excluded, so we need to use twice-lagged materials (flexible inputs).
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Table 4: Monte Carlo Results with Input Price Variation
Percent Bias in Markup Statistics

Mean Std. Dev.
κ θ γ FGT DLW FGT DLW

0.05 0.865 0.135 0.42 8.89 0.31 5.49
[0.7785, 0.9515] [0.1215, 0.1485] 2.03 9.67 0.44 5.77

0.10 0.865 0.135 0.28 9.29 0.18 5.93
[0.7785, 0.9515] [0.1215, 0.1485] 1.87 9.77 0.33 5.98

0.50 0.865 0.135 4.58 11.98 4.34 9.11
[0.7785, 0.9515] [0.1215, 0.1485] 2.89 12.68 4.77 9.58

Even under this misspecification which gives lagged flexible inputs power in the first stage
(the second stage is still misspecified), our estimator performs better. Intuitively, this is
because as the variance of input prices becomes small, our estimator is a better and better
approximation to the truth while the DLW estimator is not because it is not identified.
There is a set of assumptions under which our estimator is identified and it appears fairly
robust to small deviations from those assumptions.

6 Evaluating Estimation Extensions

6.1 Variable Returns to Scale
We can extend our identification results for at least two common classes of production
functions where returns to scale are not identically one but are a function of fixed input use
(inputs that are uncorrelated with productivity innovation shocks). We make the following
two assumptions, relaxing constant returns to scale:

Assumption 2. Returns to scale is a function h (k), that depends only on fixed inputs.

fv (v, k) + fk (v, k) = h (k) . (50)

Assumption 3. The average return to scale is 1 (or some other known number),

E [h (kit)] = 1 (51)

6.1.1 The Separable Case

Suppose that f = f 1 (v)+f 2 (k), a log additively-separable production function, and suppose
that the returns to scale of this production function is a function, h (k). Then,

f 1
v (v) + f 2

k (k) = h (k) . (52)

Differentiating the above identity with respect to v gives,

f 1
vv (v) = 0. (53)
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So these assumptions together imply that the production function has a constant elasticity
in v, so we have the “partially linear production function”,

f = θvv + f 2 (k) . (54)

This production function is a generalization of the Cobb Douglas production function.

By Assumption 3, we have,

E
[
θv + f 2

k (kt)
]

= 1 (55)

=⇒ θv = 1− E
[
f 2
k (kt)

]
(56)

From the proxy structure, using the same algebra as in our proof for the CRTS result, we
know that we can write fk as a function of fv,

fk = ∂

∂k
E
[
qt −

∫ vt

v
fv (v′, kt) dv′|kt = k, vt−1, kt−1

]
+
∫ v

v
fvk (v′, k) dv′. (57)

Plugging in the partially linear production function specification to this equation gives,

f 2
k = ∂

∂k
E [qt − θv (vt − v) |kt = k, vt−1, kt−1] (58)

So, we have,

θv = 1− E
[
f 2
k (kt)

]
(59)

= 1− E
[
∂

∂k
E [qt|kt = kt, vt−1, kt−1]

]
+ θvE

[
∂

∂k
E [vt|kt = kt, vt−1, kt−1]

]
. (60)

We need one (testable) assumption to ensure identification. The assumption rules out that
vt ≈ kt + noise.

Assumption 4. E
[
∂
∂k
E [vt|kt = kt, vt−1, kt−1]

]
6= 1

Then,

θv =
1− E

[
∂
∂k
E [qt|kt = kt, vt−1, kt−1]

]
1− E

[
∂
∂k
E [vt|kt = kt, vt−1, kt−1]

] (61)

So θv is identified. f 2
k (k) is then identified by,

f 2
k = ∂

∂k
E [qt − θv (vt − v) |kt = k, vt−1, kt−1] , (62)

and the entire production function is identified.
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6.1.2 The Translog Case

If we want to allow the output elasticity of the inputs to vary with the use of the other input,
we can use a translog specification. The translog production function will also be identified
by Assumptions 2 and 3, but with a different rank condition than used for the partially
linear model.

The translog production function is,

f = θvv + θvkvk + 1
2θvvv

2 + θkk + 1
2θkkk

2. (63)

So returns to scale are,

θv + θvkk + θvvv + θk + θvkv + θkkk. (64)

From 2, we have assumed the returns to scale function does not vary with v so the coefficient
on v above must be zero, or,

θvv = −θvk. (65)

This restriction is also required for translog production functions to have constant returns
to scale.

Applying the assumption that the returns to scale is 1 on average gives,

θv + θvkEk − θvkEv + θk + θvkEv + θkkEk = 1 (66)
=⇒ θv = 1− θvkEk − θk − θkkEk. (67)

So we can write the production relationship, using the proxy structure as,

qt = [1− θvkEkt − θk − θkkEkt] vt + θvkvtkt −
1
2θvkv

2
t + θkkt + 1

2θkkk
2
t (68)

+g̃ (vt−1, kt−1) + ηt + εt (69)

=⇒ qt − vt = θvkvt

[
kt − Ekt −

1
2vt

]
+ θk (kt − vt) + θkk

[1
2k

2
t − vtEkt

]
(70)

+g̃ (vt−1, kt−1) + ηt + εt (71)

The basic idea behind identification is that kt affects each of the three terms with coefficients
(θvk, θk, θkk) in a linearly independent way. Take expectations and a derivative with respect
to kt,

∂

∂kt
E [qt − vt|kt, kt−1, vt−1] = θvk

{
∂

∂kt
E [vt (kt − Ekt) |·]−

1
2
∂

∂kt
E
[
v2
t |·
]}

(72)

+θk
(

1− ∂

∂kt
E [vt|·]

)
+ θkk

[
kt − Ekt ×

∂

∂kt
E [vt|·]

]
. (73)
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Write the coefficient weighting θvk as τvk (kt, vt−1, kt−1), the coefficient weighting θk as τk (kt, vt−1, kt−1),
and the coefficient weighting θkk as τkk (kt, vt−1, kt−1) so that,

∂

∂kt
E [qt − vt|kt, kt−1, vt−1] = (74)

θvkτvk (kt, kt−1, vt−1) + θkτk (kt, kt−1, vt−1) + θkkτkk (kt, kt−1, vt−1) (75)

We then have the following rank condition to identify the translog production function,

Assumption 5.

E
[
(τvk, τk, τkk) (τvk, τk, τkk)>

]
is invertible. (76)

Assumption 5 is similar to the identification condition for CRTS and for the partially linear
production function. It essentially rules out E [vt|kt] = kt and E [v2

t |kt] = k2
t . If Assumption 5

is true than the coefficients can be estimated by the regression,
∂

∂kt
E [qt − vt|kt, kt−1, vt−1] = θvkτvk + θkτk + θkkτkk + estimation error. (77)

7 Concluding Remarks
Recent work in macroeconomics and industrial organization uses the firm’s first order con-
dition on flexible inputs to estimate markups from production data. This method offers a
direct measure of market power, unlike market concentration or profitability which conflates
market power and productivity. Moreover, it does not impose assumptions on demand or
market structure, and is therefore consistent with a broad class of economic models.

However, this approach falls victim to the nonidentification critique in Gandhi, Navarro, and
Rivers (2017) – the parameters in the first order condition are not identified by the most
popular production estimators. Worse still, existing solutions to the nonidentification prob-
lem do not carry over to the setting of market power and imperfect competition. In practice,
this problem means that statistical software will return parameters that use variation from
pure specification error, making the results noninterpretable.

In this paper, we present a solution that relies on specifying the returns to scale of produc-
tion. Under such an assumption, we solve the identification problem, and consequently offer
applied researchers a practical tool to reliably measure market power in production datasets.
We recommend benchmarking results with constant returns to scale, which prior work has
found to be a good approximation of reality (Basu and Fernald (1997), Syverson (2004),
Foster et al. (2008)). Researchers can then check the robustness of their findings through
sensitivity analysis.

We close the paper by showing that remaining problems in production estimators may im-
prove with emerging econometric methods that account for heterogeneous technology, offer-
ing a new direction for future research. We present a start in this direction with classification
methods in Appendix E.
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A Proof of Theorem 1
Proof. Sufficiency:

Suppose that the only function ∆ satisfying,

−E
[
∂

∂k
E
[∫ vt

v
∆ (v′, kt) dv′|kt = k, vt−1, kt−1

]]
+
∫ v

v

∂

∂k
∆ (v′, k) dv′ + ∆ (v, k) = 0 (78)

is ∆ = 0. Suppose, by way of contradiction, that there are two production functions in the
identified set such that, ∫ ∫

|f 1 (v, k)− f 0 (v, k) |dvdk 6= 0. (79)

For a given flexible input elasticity, we can recover the production function using the proxy
structure:

f (v, k) = E
[
qt −

∫ vt

v
fv (v′, kt) dv′|kt = k, vt−1, kt−1

]
−

E
[
qt −

∫ vt

v
fv (v′, kt) dv′|kt = k, vt−1, kt−1

]
+
∫ v

v
fv (v′, k) dv′ (80)

Because both f 1 and f 0 satisfy the proxy structure, we can expressed them as above. A
production function that satisfies the proxy structure has constant returns to scale if

1 = fk (v, k) + fv (v, k) = ∂

∂k
E
[
qt −

∫ vt

v
fv (v′, kt) dv′|kt = k, vt−1, kt−1

]
+
∫ v

v
fvk (v′, k) dv′ + fv (v, k) (81)

Both f 1 and f 0 have constant returns to scale, so we can difference the above equations to
get the following restriction on the difference between the two flexible output elasticities:

0 = − ∂

∂k
E
[∫ vt

v

(
f 1
v − f 0

v

)
(v′, kt) dv′|kt = k, vt−1, kt−1

]
+
∫ v

v

∂

∂k

[
f 1
v − f 0

v

]
dv′ + f 1

v − f 0
v

(82)

Define ∆ (v, k) = f 1
v − f 0

v . Then the identification assumption ∆ = 0 implies f 1
v = f 0

v .
Because both have constant returns to scale, this implies that either f 1

k = f 0
k , or that the

two production functions are the same which is a contradiction of the assumption that they
are different. There cannot be more than one production function in the identified set given
the identification condition is true.

Necessity:

Suppose there exists a ∆ (v, k) 6= 0 for all (v, k) such that,

−E
[
∂

∂k
E
[∫ vt

v
∆ (v′, kt) dv′|kt = k, vt−1, kt−1

]]
+
∫ v

v

∂

∂k
∆ (v′, k) dv′ + ∆ (v, k) = 0 (83)
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then, if there exists a production function f in the identified set, the production function
has constant returns to scale, or:

fk (v, k) + fv (v, k) = ∂

∂k
E
[
qt −

∫ vt

v
fv (v′, kt) dv′|kt = k, vt−1, kt−1

]
+
∫ v

v
fvk (v′, k) dv′

+ fv (v, k) = 1. (84)

We can construct another production function f̃ that satisfies the identifying assumptions
in the following way:

1. Let f̃v = fv + ∆.

2. Applying the same proxy transformation,

f̃ =
∫ k

k

∂

∂k
E
[
qt −

∫ vt

v
fv (v′, kt) dv′|kt = k, vt−1, kt−1

]
dk +

∫ v

v
fv (v′, k) dv′

−
∫ k

k

∂

∂k
E
[∫ vt

v
∆ (v′, kt) dv′|kt = k, vt−1, kt−1

]
dk +

∫ v

v
∆ (v, k) (85)

=⇒ f̃ = f −
∫ k

k

∂

∂k
E
[∫ vt

v
∆ (v′, kt) dv′|kt = k, vt−1, kt−1

]
dk +

∫ v

v
∆ (v, k) (86)

3. Differentiating gives

f̃k = fk −
∂

∂k
E
[∫ vt

v
∆ (v′, kt) dv′|kt = k, vt−1, kt−1

]
+
∫ v

v

∂

∂k
∆ (v′, k) dv′ (87)

f̃v = fv + ∆ (v, k) (88)

f̃v + f̃k = 1− ∂

∂k
E
[∫ vt

v
∆ (v′, kt) dv′|kt = k, vt−1, kt−1

]
(89)

+
∫ v

v

∂

∂k
∆ (v′, k) dv′ + ∆ (v, k)

4. Because this must be true for all (v, k, vt−1, kt−1) and the left hand side is only a function
of (v, k), integrating both sides with respect to (vt−1, kt−1) makes no difference so:

f̃v + f̃k = 1− E
[
∂

∂k
E
[∫ vt

v
∆ (v′, kt) dv′|kt = k, vt−1, kt−1

]]

+
∫ v

v

∂

∂k
∆ (v′, k) dv′ + ∆ (v, k) (90)

= 1

Implying f̃ has constant returns to scale. Hence, there are multiple production func-
tions in the identified set, a contradiction.
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B Linear-in-Parameters Example
More generally, production functions that are linear-in-parameters (like the Cobb Douglas
and translog production functions) will satisfy the identification condition under a reasonable
rank assumption. Suppose,

f(v, k) = r(v, k)>θ,

for some known vector of functions r(v, k). Define ∆θ = θ − θ′. Assumption 1 can then be
written as,

−E
[
∂

∂k
E
[∫ vt

v
rv(v′, k)dv′|kt

]]>
∆θ + ∆>θ

∫
rvk(v′, k)dv′ (91)

+rv(v, k)>∆θ = 0 (92)

By the constant returns to scale assumption, we have:

∆>θ
∫ v

v
rkv(v′, k)dv′ = −∆>θ

∫ v

v
rvv(v′, k)dv′ = ∆>θ [rv(v, k)− rv(v, k)] (93)

So:

− E
[
∂

∂k
E
[∫ vt

v
rv(v′, k)dv′|kt = k, vt−1, kt−1

]]>
∆θ + ∆>θ rv(v, k) = 0 (94)

From the fundamental theorem of calculus and because [rv(v, k) + rk(v, k)]>∆θ = 0, we have
the following condition,

− E[ ∂
∂k

E [r(vt, k)|kt = k, vt−1, kt−1]]>∆θ = 0 (95)

So, as long as the functions (of k) interacted with ∆θ are not collinear the linear-in-parameters
production function is identified. For example, if,

E

E
[
∂

∂k
E [r(vt, k)|kt = k, vt−1, kt−1]

]
E
[
∂

∂k
E [r(vt, k)|kt = k, vt−1, kt−1]

]> ,
is invertible, then the production function is identified.
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C Illustrating with Linear-in-Parameters Production
Functions

Suppose the production function can be written as,

f = r(v, k)>θ. (96)

For a known vector of functions r(v, k). The model can be estimated in the following way:

1. Regress qt on some flexible transformation of (vt, kt) to estimate φ (vt, kt) = E [qt|vt, kt].

2. For a given guess of θ,

φ (vt, kt)− r(vt, kt)>θ = at (97)

3. Regress at on (transformations of) at−1,

at = g (at−1) + ηt (98)

4. Let h(k) be a sufficient number of linearly-independent transformations of k. Solve the
moment equation using GMM,

1
n

∑
it

h(kit)ηit (θ) = 0

1
n

∑
it

r(vit, kit)(RTSit(θ)− 1) = 0 (99)

D Solution to the Monte Carlo Dynamic Programming
Problem

To solve the dynamic programming problem, write out the first order conditions for (V,X,QE),

(V ) : WV = λ× AθV θ−1Kγ (100)
(X) : WX = βE [MK (Aη, δK +X)] (101)

(QE) : (η + 1)Qη
EE [exp ((η + 1) ε)] = λ (102)

The solution to the static part of the optimization problem is found by collapsing the (QE, V )
first order conditions,

WV = (η + 1)
(
AV θKγ

)η
E [exp ((η + 1) ε)]× AθV θ−1Kγ (103)

=⇒ V (A,K) =
{

WV × A−η−1K−γ(η+1)

(η + 1) θE [exp ((η + 1) ε)]

} 1
θ(η+1)−1

(104)
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We can solve for the choice of X by using the envelope theorem and the first order conditions
to write,

MK (A,K) = γ (η + 1)
K

×Qη+1
E (A,K)η+1 E [exp ((η + 1) ε)] + βδE [MK (Aη, δ ×K +X)]

(105)

= γ (η + 1)
K

×Qη+1
E (A,K)η+1 E [exp ((η + 1) ε)] + βδWX

(106)

Defining K ′ = δ ×K +X we can the X first order condition as,

(1− βδ)WX = βE [exp ((η + 1) ε)]E
[
γ (η + 1)

K ′
×QE (Aν,K ′)η+1

]
(107)

Because,

QE (A,K) = A×
{

WV × A−η−1K−γ(η+1)

(η + 1)E [exp ((η + 1) ε)]

} θ
θ(η+1)−1

×Kγ = A−(η+1) θ
θ(η+1)−1 +1 × ι0Kι1 ,

(108)

where ι0 and ι1 are just functions of the problem’s parameters.

Then, the first order condition for X is,

(1− βδ)WX = βE [exp ((η + 1) ε)] γ (η + 1)× ι0K ′ι1(η+1)−1 × A−
(η+1)

θ(η+1)−1E
[
ν−

(η+1)
θ(η+1)−1

]
.

(109)

Because ν is log normal (recall that E [exp (tX)] is the moment generating function of X so
we simply evaluate the moment generating function of log ν at the relevant value),

E
[
exp

(
− (η + 1)
θ (η + 1)− 1 × log ν

)]
= exp

− (η + 1)
θ (η + 1)− 1µν + σ2

ν

2 ×
(

(η + 1)
θ (η + 1)− 1

)2

(110)

In any case, we can now solve the first order condition for X in terms of the parameters of
the problem which yields the not-so-beautiful but easy-to-solve expression,

K ′ι1(η+1)−1 = (1− βδ)WX

βE [exp ((η + 1) ε)] γ (η + 1) ι0 exp
(
− (η+1)
θ(η+1)−1µν + σ2

ν

2 ×
(

(η+1)
θ(η+1)−1

)2
)A (η+1)

θ(η+1)−1

(111)
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E Robustness Checks with Classification Methods
For robustness, we consider using classification methods from the machine learning literature
to allow for more flexible production functions. We suppose that there are groups of firms
within each industry with the same production function, but that these groups are unknown
to us so we must learn them from the data unlike in the above results where we group the
firms ex-ante.

The first method we consider is to group firms (within an industry) with similar input cost
shares. Define the share of services in variable expenses as (SGA/OPEX). Economic theory
suggests that firms with similar output elasticities will have similar fractions of their variable
spending attributed to each of the variable inputs. We build a regression tree on the logit
transformation of (SGA/OPEX) using firm dummies and year dummies as the covariates
and leave-one-out least squares cross validation to score the model.

Regression trees work by splitting each set of covariates (firm dummies and year dummies)
into binary groups and then estimating the leave-one-out least-squares cross validation metric
using those group dummies as covariates. They iteratively split the sample in a hierarchical
fashion to maximally reduce the score. They stop splitting when they fail to reduce the
cross-validation score. Within each group created by this regression tree, we estimate a
different production function using the method we develop in this paper.

The second method we consider is k-means clustering, which allows us to group firms that
are similar across a vector of characteristics. Within each industry, we group firms for the
vector of (COGS/SALES, SGA/SALES, SALES). We use k=3 to form three groups within
each industry and estimate the production function within each group.

Table 5 repeats the earlier exercise of evaluating estimators with the partial identification
bounds. Although largely similar, the classifiers seem to decrease inadmissibly low markups,
but increase inadmissibly high markups. The overall size of these violations remains small.

Figures 8 and 9 show the moments and model-implied losses for the CD-OPEX specification
across classifiers. The takeaway is the same as Table 5 – these additional methods do not
seem to pick up any notable heterogeneity not already covered by the flexibility of our proxy
approach.

Figures 10 and 11 repeat this exercise but for the TL-COGS specification. The overall losses
are considerably higher. Output losses are now about 4 percent (up from 1), and labor share
losses are now about 21 percent (up from 11).
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Figure 8: Level and Dispersion Stability, CD-OPEX

Source: Data from Compustat, estimates from authors’ calculations.
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Table 5: Specification Error using Bounds
Specification Too Low, Raw Percent Too High, Raw Percent

Form Flex Base k-
Means Tree Base k-

Means Tree

CD OPEX 0.16 0.10 0.08 0.03 0.17 0.36
CD COGS 0.31 0.37 0.22 0.41 0.48 0.60
TL OPEX 0.18 0.10 0.16 0.62 0.65 0.63
TL COGS 0.41 0.23 0.32 0.00 0.00 0.04

Too Low, Average Violation Too High, Average Violation

Form Flex Base k-
Means Tree Base k-

Means Tree

CD OPEX 0.02 0.01 0.01 0.00 0.02 0.04
CD COGS 0.04 0.04 0.06 0.11 0.13 0.12
TL OPEX 0.02 0.01 0.07 0.06 0.08 0.09
TL COGS 0.13 0.05 0.16 0.00 0.00 0.00

Figure 9: Macroeconomic Implications Stability, CD-OPEX

Source: Data from Compustat, estimates from authors’ calculations using the sufficient statistics
of Peters (2018).
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Figure 10: Level and Dispersion Stability, TL-COGS

Source: Data from Compustat, estimates from authors’ calculations.
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Figure 11: Macroeconomic Implications Stability, CD-OPEX

Source: Data from Compustat, estimates from authors’ calculations using the sufficient statistics
of Peters (2018).

F Note on Revenue Data
Like in the vast majority of production settings, our data contain information on sales divided
by price indices, not quantities directly. In this short section, we make explicit the (usually
implicit) set of assumptions that imply identification of the physical production function
with this measure of output.

Let log price be p. We can write the production equation as

pt + qt = f (vt, kt) + at + pt + εt (112)

Define ωt = at + pt, and modify the typical proxy assumptions about ωt as follows:

Assumption 6. ωt is a Markov process:

ωt = g (ωt−1) + ηt (113)

Assumption 7. Future input choices have no information about future ωt+1 given current
input choices. In particular,

g (ωt) = E [g (ωt) |kt, vt] + ut (114)
E [ut|kt+1, kt, vt] = 0. (115)

In words, inputs span all systematic elements that determine ωt, and future capital choice is
unrelated to deviations from the projection of ωt on inputs. Assumption 7 is a weaker form
of the proxy assumption which assumes that ωt = ω (kt, vt). It allows for price to vary based
on unobserved state variables so long as those state variables are either controlled for given
(kt, vt), or have only idiosyncratic components that do not affect investment decisions made
at time t.
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Given Assumptions 6 and 7, we can write,

pt + qt = f (vt, kt) + E [g (ωt−1) |kt−1, vt−1] + ut + ηt + εt. (116)

We can then proceed applying the same estimation and identification argument developed
in the main text. While we cannot identify physical productivity with this argument, we
can identify the flexible input elasticity that we need to identify markups. The measure
of productivity that does come out of the model may be viewed as a “quality-adjusted”
productivity because it is the product of price and productivity, at + pt.
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