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Abstract

We estimate markups from production data by directly recovering the production func-
tion and inferring marginal costs. The challenge in doing so is that we must first identify the
production function, itself a difficult identification problem. Proxy methods and other com-
mon structural methods of identifying the production function make assumptions that re-
strict markups to identify the production function so they can not be used to infer markups
from the production function. We show how to modify the standard proxy model to avoid
restricting markups while still being able to partially identify the production function and
use this approach to put meaningful bounds on the relationship between export status and
markups.

1 Introduction

Measuring markups is a classic problem in empirical industrial organization. The New Empir-
ical Industrial Organization (NEIO) paradigm attacks the problem through the demand side,
combining an estimated demand system with first order conditions from a model of competi-
tion to recover markups. But when data on demand is not rich, the approach can not be used
as intended because it forces the researcher to use a restrictive demand system to augment the
lack of variation in the data (say, the CES demand system). The functional form of demand, as
opposed to variation in the data, then drives inferences about markups. The empirical strat-
egy also requires the researcher to impose a model of firm conduct (which is often a variation
of Bertrand-Nash pricing). Inferences about markups will be driven by this modeling choice
when we have little prior reason to suppose any particular conduct model. The goal of learning
the markup distribution is to learn something about market power within the industry which
is strongly tied to the conduct of the industry. Can we learn about markups without assuming
conduct?

We approach the problem, as De Loecker and Warzynski (2012) do, through the cost side of
the firm’s problem. If we can recover a firm’s cost or production function without assuming
conduct, then we can directly recover marginal cost without making assumptions about the
form of the conduct part of the firm’s problem (we can think of conduct as a function mapping
firm choices to markups).
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Cost minimization implies that for any “flexible” input — an input that has no dynamic conse-
quences and can be freely adjusted — the following equation holds,

P

MC
= Revenue

Expenditure on flexible input
×Output elasticity of flexible input, (1)

where P is output price and MC is marginal cost. The equation suggests an empirical strategy.
The left hand side of the equality is a measure of markups. If we can measure the output elastic-
ity of a variable input from production data, without assuming conduct, then we know the right
hand side of (1) and can recover markups. De Loecker and Warzynski (2012) suggest exactly this
strategy.

The challenge is that identifying the output elasticity of a variable input from input and output
data is itself nontrivial. Estimation of the production function faces a classic simultaneity prob-
lem — inputs are chosen on the basis of productivity, the “transmission bias” of Marschak and
Andrews 1944 — and to overcome that problem, we often restrict markups.

De Loecker and Warzynski (2012) appeal (understandably) to the “proxy” literature for iden-
tification (see Olley and Pakes 1996, Levinsohn and Petrin 2003, Ackerberg, Caves, and Frazer
2015) which restricts the plant’s input choice problem in order to allow observable variables to
“proxy” for unobserved productivity.

But Gandhi, Navarro, and Rivers (2015) show the output elasticities of variable inputs are not
identified under the economic restrictions imposed in the proxy literature1. We review the non-
identification result and its implications for the markup problem in Section 2. In Section 8.3, we
illustrate how we would make misleading inferences about markups if we used proxy variable
estimators with a Monte Carlo.

Our constructive contribution is to show that equation (1) can be used to learn about markups
despite the non-identification result in Gandhi, Navarro, and Rivers (2015). There are two key
ideas: first, the proxy structure can be used to partially identify the production function without
pinning down markups in spite of the non-point identification result in Gandhi, Navarro, and
Rivers (2015); second, that it is not the markup of a particular firm that is of interest for policy
purposes, but the pattern or distribution of markups in the industry. Ultimately, we are inter-
ested in some element of the vector of parameters β that characterize the linear relationship
between markups on firm/plant characteristics (X ),

P

MC
= X >β+U , E [XU ] = 0. (2)

Although β is not point identified (because markups are not point identified), we show β can
be partially identified using the economic restrictions of the proxy model. The upper and

1The empirical strategy proposed in Gandhi, Navarro, and Rivers (2015) to solve the nonidentification problem
in fact goes in the opposite direction of De Loecker and Warzynski (2012). They show that if we know markups, then
the flexible input elasticity can be identified using equation (1). With knowledge of the flexible input elasticity, the
full production function can be recovered by using the standard structure in the proxy literature. But this precludes
using equation (1) to estimate markups because we have already assumed markups to recover the production
function.
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lower bounds on β can be expressed as a linear program and there are useful, computationally-
convenient methods to make inference on the value of those programs. We apply our identifi-
cation strategy to production data from Chile and find that our bounds have enough content to
sign the relationship between exporter status, markups, and productivity in many industries.

Standard trade models with firm heterogeneity—like Melitz and Ottaviano (2008)—predict that
more productive firms will have higher markups within their own market. Because such models
predict that exporters will be more productive, they also predict the domestic firms that engage
in trade will have more market power. We find general support for the prediction across indus-
tries but only when we control for plant contact with the world market. Unconditional on plant
contact with the world market, we would find a negative relationship because, we show, Chilean
plants earn substantially lower markups in the world market than in their domestic market.

In Section 2, we describe the proxy model and methods of recovering markups based on it. We
show that these methods can not identify markups without observing plant-level wages that
can be excluded—differences in plant-level wages can not reflect differences in productivity.

In Section 3, we lay out our identification approach based on a weak version of the first order
condition approach in Gandhi, Navarro, and Rivers (2015) and the standard proxy assumptions.

In Section 5, we show how to use our identification assumptions to form confidence intervals
around parameters of interest.

In Section 9, we discuss the data we use to learn about the relationship between markups, plant
size, and plant exporter status.

In Section 8.2, we present a simplified version of the model in Melitz and Ottaviano (2008) to
show the economics behind the main theoretical prediction we test.

We define our measure of markups in Section 8.1, we present some “reduced-form” findings
about the data in Section 10, and we give our main empirical estimates in Section 11.

2 The Model and Non-Identification Problem

Let qt be log output and (`t ,kt ,mt ) be the log of labor, capital, and materials respectively in
period t . The data are inputs and output over the panel t = 1, . . .T ,

y = {(
qt ,`t ,kt ,mt

)}T
t=1 . (3)

The joint distribution of the data y in the underlying population of plants is identified in the
data. Capital letters stand for the levels of the logged variables so that, Qt is output, Lt is labor,
Kt is capital, and Mt is materials.

The proxy approach relates this data to a model of production with three main parts (we will
call this set of assumptions, the “proxy structure”):

1. Output and inputs in each period are related in the following way:

qt = f (`t ,kt ,mt )+at +εt , (4)
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where f is the production function characterizing the technology of an industry, at is a
productivity shock that the firm observes before making its period t input decisions, and
εt is an ex-post shock that is independent of the firm’s input decisions.

2. Productivity is a Markov process,

at = g (at−1)+et , (5)

where the shocks et are uncorrelated with inputs chosen before period t , so:

E [et |`t ,kt ,`t−1,kt−1,mt−1, . . . ] = 0, (6)

where the ellipses represent all other lags of the inputs.

3. Plants choose materials mt flexibly in each period and this choice does not have any dy-
namic implications. Capital and labor, (`t ,kt ), are quasi-fixed: they are chosen before
period t and treated as a state variable by the plant in period t (chosen before et is known
by the plant).

Material input demand has the form mt = mt (`t ,kt , at ) where mt is a strictly increasing
function of at . The model is called the “proxy structure” because this assumption implies
productivity can be proxied by observable inputs, at = m−1

t (mt ,`t ,kt ).

Gandhi, Navarro, and Rivers (2015) show this structure is insufficient to identify f . For any pro-
posed production function f there exists an f̃ that is observationally equivalent: both f and
f̃ are consistent with the proxy structure and generate the same joint distribution of observ-
ables. Any estimator motivated by restrictions generated by this structure will not be consistent
(except for potentially arbitrary functional form restrictions on f ). But Gandhi, Navarro, and
Rivers (2015) show that if the flexible input elasticity,

∂

∂mt
f (`t ,kt ,mt ) ,

were identified through an outside source, then the production function f would be identified
over the support of the data given the proxy structure; the source of under-identification is the
flexible input elasticity.

Gandhi, Navarro, and Rivers (2015) solve the identification problem by assuming a markup
(P = MC, say) and using the relationship between markups and the flexible output elasticity
to recover the production function. But, if our purpose is to use the relationship (1) to learn
about markups, we can not use this method.

De Loecker and Warzynski (2012) use lags of flexible inputs to instrument for current flexible
inputs. Their argument is that lags of flexible inputs will be correlated with the price of the
plant’s inputs which will shift the distribution of current inputs but, since they were chosen in
the past, they will be uncorrelated with later shocks to productivity. Their argument introduces
input price variation — which is absent from the proxy structure.
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If there is no wage variation, then Gandhi, Navarro, and Rivers (2015) have already shown the
model is not identified. Briefly, without wage variation, the proxy model is,

qi t = f (`i t ,ki t ,mi t )+ g (`i t−1,ki t−1,mi t−1)+ei t +εi t (7)

E [ei t +εi t |`i t ,ki t ,`i t−1,ki t−1,mi t−1, . . . ] = 0, (8)

where the ellipses stands for all other lags of the inputs, i indexes plants, and t indexes the unit
of time. The moment restriction is insufficient to identify the production function because,
under the proxy model,

mi t = mt (`i t ,ki t , ai t ) = mt
(
`i t ,ki t , g (`i t−1,ki t−1,mi t−1)+ei t

)
, (9)

so, conditional on (`i t ,ki t ,`i t−1,ki t−1,mi t−1), the only variation in mi t is via ei t but, by assump-
tion, ei t can not be predicted by lagged inputs so lagged inputs are not valid instruments for
mi t .

The difference between the model De Loecker and Warzynski (2012) have in mind and the
proxy assumptions used in Gandhi, Navarro, and Rivers (2015) is that De Loecker and Warzyn-
ski (2012) allow input prices to vary by plant which gives another plant-specific state variable
aside from ei t that might shift mi t . Does the presence of input price variation break the non-
identification result?

There are two problems: the nature of the input price variation required for identification is
more demanding than we might intuit (it is not enough that input prices vary by plant) and
the nature of the data required is more demanding than we see in practice (we must observe
the plant-level wages). We will argue these two problems demand a new approach that does
not rely on this variation. But, before we present our arguments, we should acknowledge that
using input prices for identification can work in some special situations, and it provides point
identification while our methods will give only partial identification.

First, say input prices vary across plants, and we observe these input prices. In that case, mate-
rial demand is,

mt = mt (at ,`t ,kt , wt ) = mt
(
g (`t−1,kt−1,mt−1, wt−1)+et ,`t ,kt , wt

)
, (10)

where wt is the log price of materials.

The first question for identification is whether mt−2 has any strength as an instrument; is it
correlated with mt conditional on (`t ,kt ,`t−1,kt−1,mt−1, wt−1)? Aside from the variables that
are conditioned on, there are two state variables that affect material demand: (et , wt ). By the
proxy assumptions, mt−2 is not correlated with et so, for the instrument to have any strength, it
must be correlated with wt , conditional on (`t ,kt ,`t−1,kt−1,mt−1, wt−1).

To see why this is a stronger assumption that we might think, suppose wt is an AR1 process,

wi t = ρw wi t−1 + innovationi t , innovationi t ∼ N (0,1) . (11)
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where the innovation is a shock, independent of any decisions the plant makes. Then, con-
ditional on wi t−1, the only variation in wi t is through the innovation term which is entirely
independent of mi t−2. If this model is the data generating process, then mi t−2 has no strength
as an instrument. Similarly, if wi t were just fluctuations around a plant-specific mean — wi t =
δi +fluctuationi t , where the fluctuations are iid — the model would not be identified.

What we need for mi t−2 to be an instrument is for there to be a plant-specific component of the
wage process—for example,

wi t = ρw wi t−1 +ξi + innovationi t — (12)

or that wt is at least an AR2 process; there needs to be some underlying state variable that affects
wi t aside from wi t−1 that mi t−2 can proxy.

The second question for identification is whether mt−2 is a valid instrument. The question
might seem to be beside the point because we have already assumed mt−2 is uncorrelated with
the innovation term in the proxy structure we laid out above. But this structure is justified within
a model where inputs are homogeneous and input price variation suggests input quality varia-
tion. If input price variation does reflect input quality variation, then innovations in the wage
process are not unrelated to innovations in the productivity process—when wages go up, it is
because the plant is using more productive inputs—in which case mt−2 is correlated with et .

But the larger issue is that we often do not observe wt . If input prices vary across plants but we
do not observe this variation, then using twice-lagged2 flexible inputs as instruments will not
work because then, the proxy function is,

mt = mt (at ,`t ,kt , wt ) =⇒ at = m−1
t (mt ,`t ,kt , wt ) (13)

=⇒ qt = f (`t ,kt ,mt )+ g (`t−1,kt−1,mt−1, wt−1)+et +εt . (14)

If we do not observe wt−1 and we run the above model, omitting wt−1, we introduce an omitted
variable bias. So the De Loecker and Warzynski (2012) approach requires that we observe wages,
which we do not usually do.

In fact, the reason to use lagged flexible inputs as the instrument is that we do not observe plant
wages—otherwise, if we believe wage variation is excluded, we could just use plant-level wages
(wi t ) directly as the instrument and it would likely be a stronger instrument than indirectly
proxying wi t via mi t−2.

Only in the case where input prices vary in a particular way and where this variation is exoge-
nous to productivity (some plants are stuck with getting a worse input price for similar inputs)
can the method be used to recover the production function. Because we do not usually ob-
serve exogenous variation in plant-level input prices, an alternative method to recover markups
would be useful.

2De Loecker and Warzynski (2012) use a value-added production function and treat labor as a flexible input.
In that case, labor does not appear in the material demand function so first-lagged labor is excluded. But when
materials are the flexible input and included in the production function, lagged materials are not excluded so we
need twice-lagged flexible input use.
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We develop one, showing how to use the standard proxy assumptions to partially identify the
markup distribution and avoid these issues.

3 Partial identification of the production function in the proxy
model

Our goal is to identify the flexible output elasticity without putting too much structure on con-
duct and to avoid the issues plaguing the use of input price variation for identification. Ac-
complishing this goal while maintaining point identification is difficult without making strong
assumptions on exactly how plants choose inputs or on the functional form of the production
function. We use a partial identification approach derived under the same assumptions as the
proxy approach which allows for a broad class of conducts and technologies.

We show that while the assumptions of the proxy methods do not point identify the flexible
output elasticity, they do partially identify it.

Identification of the markup distribution depends on identification of the material output elas-
ticity. The proxy approach in Levinsohn and Petrin (2003) argues material demand is increasing
in productivity. They use this assumption to argue productivity is a function of observed inputs,
but the assumption also implies the inverse material demand function is increasing in materi-
als, or:

at = m−1
t (mt ,kt ,`t ) ,

∂m−1
t

∂mt
≥ 0 (15)

=⇒ ∂

∂mt
E
(
qt |`t ,kt ,mt

)≥ ∂ f

∂m
, (16)

an upper bound on the flexible output elasticity. While this restriction is not usually imposed
empirically in the proxy literature, it has identifying power and is not an extra assumption be-
yond the standard proxy structure introduced in Section 2.

For a lower bound on the flexible output elasticity, we weaken Gandhi, Navarro, and Rivers
(2015)’s assumption that planned markups are zero, to the assumption that planned markups
are greater than zero—this assumption is our one addition to the proxy structure, but it is satis-
fied in the standard models used to justify the assumption that material demand is increasing
in productivity.

Planned output (QE ) is the output the plant expects to produce, given its input choices and
productivity,

QE = F (L,K , M) A×E
[
exp(ε)

]
. (17)

While we do not observe planned output, we do observe output which is,

Q = F (L,K , M) A exp(ε) =QEE
[
exp(ε)

]−1 exp(ε) (18)

=⇒ QE =Q exp(−ε)E
[
exp(ε)

]
. (19)
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Because, by the proxy assumptions,

qt = f (`t ,kt ,mt )+at +εt = f (`t ,kt ,mt )+m−1
t (mt ,`t ,kt )+εt (20)

E [εt |`t ,kt ,mt ] = 0 =⇒ qt = E
[
qt |`t ,kt ,mt

]+εt , (21)

we can recover εt from data and so, planned output (QE ).

Our measure of planned markups is then, letting RevenueE be expected revenue,

RevenueE

WM M
× ∂ f

∂m
≥ 1 ⇐⇒ ∂ f

∂m
≥ WM M

RevenueE
= WM M

Revenue×E
[
exp(ε)

] ×exp(ε) (22)

=⇒ ∂ f

∂m
≥ exp

{
E

[
log

(
WM M

Revenue×E
[
exp(ε)

])
|`,k,m

]}
, (23)

which gives a lower bound on the material output elasticity. The lower bound is exactly Gandhi,
Navarro, and Rivers (2015)’s estimate of the material output elasticity.

With just these two assumptions, we can bound parameters of the markup distribution. These
assumptions exhaust the power of the proxy structure to identify the markup distribution be-
cause these are the only restrictions the proxy model of production puts on the flexible output
elasticity.

4 Revenue as output

We do not usually observe physical output. Instead, we observe revenue and we deflate revenue
using various deflators. The mismeasurement of output can have serious consequences for
production function estimates when there is imperfect competition — which is exactly what
we are assuming when we are estimating markups.

While our approach is not entirely immune from this challenge, it is more resilient to using rev-
enue as a measure of output than most common production function estimation approaches
by virtue of the fact that the validity of the identified set does not depend on observing output.

Our lower bound on the output elasticity does not depend on output at all,

∂ f

∂m
≥ exp

{
E

[
log

(
WM M

Revenue×E
[
exp(ε)

])
|`,k,m

]}
, (24)

so we only need to observe revenue.

Our upper bound on the output elasticity is,

∂

∂m
E
[
q|`,k,m

]≥ ∂ f

∂m
, (25)

so the upper bound does depend on physical output. Consider replacing physical output with
revenue above so that,

∂

∂m
E
[
p +q |`,k,m

]= ∂

∂m
E
[
p|`,k,m

]+ ∂

∂m
E
[
q|`,k,m

]= ∂

∂m
E
[
p +a|`,k,m

]+ ∂ f

∂m
(26)
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If,

∂

∂m
E
[
p +a|`,k,m

]≥ 0, (27)

then we can use revenue in the place of output as the upper bound.

There is good reason to suppose that E
[
p +a|`,k,m

]
is increasing in m. Suppose that each

plant faces a demand curve, pi = ξi + ηqi (where p is log output price), where the demand
curve is elastic so that 0 > η > −1. The constant elasticity form is not crucial, but it helps to
illustrate the main idea.

The static part of the profit maximization problem is,

max
M

Ξi F (L,K , M)η+1 Aη+1 −WM M (28)

=⇒ Ξi
(
η+1

)
F ηFM Aη+1 =WM (29)

=⇒ PA = WM(
η+1

)
FM

, (30)

Or:

∂

∂m
E
[
p +a|`,k,m

]= ∂

∂m
E [wm |`,k,m]− ∂

∂m
logFM (31)

Suppose there are decreasing returns to materials, FM M < 0. Then,

∂

∂m
logFM = FM M

FM
×M ≤ 0 =⇒ ∂

∂m
E
[
p +a|`,k,m

]≥ ∂

∂m
E [wm |`,k,m] . (32)

Supposing that WM does not vary across plants — or, at least, does not vary conditional on (`,k)
because (`,k) proxy for that variation — then,

∂

∂m
E
[
p +a|`,k,m

]≥ 0 (33)

=⇒ ∂

∂m
E
[
p +q |`,k,m

]≥ ∂ f

∂m
. (34)

Otherwise if WM does vary and the variation is not fully proxied for by (`,k), then, intuitively,
E [wm |`,k,m] would be decreasing in materials which might make the bounds slightly too tight.

To limit the bias in the upper bound caused by unobserved wage variation, we could condi-
tion on additional variables besides (`,k,m). For example, we could include plant level and
time level fixed effects in the regression of revenue on (`,k,m). In that case, the identification
assumption would be that there exists an x such that,

∂

∂m
E [w |`,k,m, x] ≈ 0 =⇒ ∂

∂m
E
[
p +q|`,k,m, x

]≥ ∂ f

∂m
. (35)
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Or, in the most ideal case, if WM is observed (but output prices are not), then we can use the
above argument to write,

∂

∂m
E
[
p +q|`,k,m

]− ∂

∂m
E [wm |`,k,m] ≥ ∂ f

∂m
, (36)

and increase the credibility of our bounds with revenue data as output.

5 Inference

We now show how to use the identification assumptions to make inference on statistics of the
markup distribution.

In Appendix A, we show how nonparametric inference could be made on the production func-
tion and other partially-identified statistics of interest. While those techniques are general, put
few assumptions on the data generating process, and can be used to test arbitrary hypothe-
sis, they are also often difficult to use in practice, requiring us to make choices about tuning
parameters and to search high-dimensional parameter spaces.

Our preferred empirical approach is to assume the output elasticity of the flexible input is linear
in a finite number of parameters,

∂ f

∂m
(`,k,m) =

J∑
j=1

θ j r j (`,k,m) , (37)

Where r j (·) are known basis functions.

For any given material output elasticity (a vector of parameters θ), we can recover the full pro-
duction function via the Markov restrictions on productivity as shown in Gandhi, Navarro, and
Rivers (2015). We first establish that the production function identified in this way is a linear
function of θ as well, allowing us to build a computationally-convenient estimator.

Let m be a fixed value of material use. Then, we can recover the production function up to a
function of labor and capital with knowledge of the material output elasticity,∫ m

m

∂ f

∂m
(`,k,m)dm = f (`,k,m)− f

(
`,k,m

)
. (38)

Because productivity is,

at = qt − f (`t ,kt ,mt )−εt = qt −
∫ mt

m

∂ f

∂m
(`t ,kt ,m)dm − f

(
`t ,kt ,m

)
, (39)

the Markov assumption on productivity and the assumption that labor and capital are quasi-
fixed, uncorrelated with et , identifies f

(
`t ,kt ,m

)
,

at = g (`t−1,kt−1,mt−1)+et (40)

=⇒ qt −
∫ mt

m

∂ f

∂m
(`t ,kt ,m)dm = f

(
`t ,kt ,m

)+ g (`t−1,kt−1,mt−1)+et +εt (41)

E [et +εt |`t ,kt ,`t−1,kt−1,mt−1] = 0. (42)
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With f
(
`t ,kt ,m

)
in hand, we can identify the full production function, f (`,k,m), from equa-

tion (38).

Empirically, we approximate the functions f
(
`,k,m

)
and g (`,k,m) with flexible functional

forms,

f
(
`,k,m

)= s (`,k)>γ, g (`,k,m) = p (`,k,m)>ρ, (43)

where γ and ρ are unknown parameter vectors and s (·) and p (·) are known functions.

After a little algebra, we can write γ as a linear function of θ,

qt −
J∑

j=1
θ j

∫
r j (`t ,kt ,m)dm = s (`t ,kt )>γ+p (`t−1,kt−1,mt−1)>ρ+et +εt (44)

=⇒
(
γ

ρ

)
= E

[(
s, p

)> (
s, p

)]−1
E

[(
s, p

)> (
qt −

J∑
j=1

θ j

∫
r j (`t ,kt ,m)dm

)]
(45)

γ= Γ0 +Γ1θ, (46)

where Γ0 and Γ1 are matrices with elements that are point identified from the data (functions
of the moments of s, p, and q) and θ are the parameters of the flexible output elasticity.

The full production function is then a linear function of θ,

f (`,k,m) = s>Γ0 + s>Γ1θ+
J∑

j=1
θ j

∫ m

m
r j dm. (47)

So because θ is partially identified, the material output elasticity, from our assumptions in Sec-
tion 3, we have partial identification of the full production function as well.

The object of interest, a linear function of the regression coefficients of markups regressed on
some plant characteristics X , is also a linear function of θ because

P

MC
= X >β+U (48)

β= Bθ, (49)

and we want upper and lower bounds on some element of β given that θ is in the set identified
by our assumptions.

Our identified set for θ is,

exp

{
E

[
log

WM Mt

Revenuet ×E
[
exp

(
qt −E

[
qt |`t ,kt ,mt

])] |`t ,kt ,mt

]}
(50)

≤ r (`t ,kt ,mt )>θ ≤ ∂

∂mt
E
[
qt |`t ,kt ,mt

]
(51)

∀ (`t ,kt ,mt ) . (52)
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We approximate both the lower and upper bound functions by some functional form. It is good
in practice to ensure that the upper and lower bounds are about as flexible as we allow the ma-
terials output elasticity to be. Otherwise, the bounds may be narrow in finite samples because
of our functional form assumptions and not because of variation in the data or the strength of
our identifying assumptions. It is difficult to find a place for a line, say, between two very jagged
curves.

So, say the bounds are, after choosing our functional forms (this choice is discussed more in the
following sections),

r (`t ,kt ,mt )>θ ≤ r (`t ,kt ,mt )>θ ≤ r (`t ,kt ,mt )>θ, (53)

where θ and θ can be estimated by
p

n- asymptotically normal estimators.

We can write the hypothesis that, say, β1 = b, as the hypothesis that there exists a θ such that,

r (`i t ,ki t ,mi t )>
(
θ−θ)≤ 0 (54)

r (`i t ,ki t ,mi t )>
(
θ−θ

)
≤ 0 (55)

B>
1 θ−b = 0. (56)

We take the view that factor usage is fixed (so the r above are not random) as is commonly done
to compute standard errors in ordinary least squares regressions. Conditional on the “design” of
the model, we can apply a convenient inference strategy based on a standard Wald hypothesis
test.

Write the above constraint set as,

Mθ ≤ d − (b,−b,0, . . . ,0)> , (57)

where b is the hypothesized value of B>
1 θ and the linear equality constraint has been trans-

formed into two inequality constraints.

For any given θ we can test the hypothesis that B>
1 θ = b by performing a simple Wald test3,

min
t≥0

(
d̂ − M̂θ− (b,−b,0, . . . ,0)>

)>
Ŵ (θ,b)

(
d̂ − M̂θ− (b,−b,0, . . . ,0)>

)
, (58)

Where Ŵ is the inverse of the covariance matrix of d̂−M̂θ−(b,−b,0, . . . ,0)>. Kudo (1963) shows
that the limiting distribution of the above test statistic is a mixture of chi-squared distributions
(the weights of the mixture can be easily approximated via Monte Carlo techniques).

We then search over θ to find a value of θ where the hypothesis that B>
1 θ = b is not rejected to

form a confidence interval for B>
1 θ.

We use the following steps to test whether B>
1 θ = b.

3It is possible to use Guggenberger, Hahn, and Kim (2008) to improve the power of this test. Guggenberger,
Hahn, and Kim (2008) show that a solution exists to a linear inequality if and only if a specially constructed vector
is entirely positive so applying the Wald test to this transformed model has more power. But, it turns out, the vector
is very large in our particular problem.
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1. For a given hypothesis B>
1 θ = b and θ, solve the following optimization problem to

obtain TS(θ):

TS(θ) = min
t≥0

(
d̂ − M̂θ− (b,−b,0, . . . ,0)>

)>
Ŵ (θ,b)

(
d̂ − M̂θ− (b,−b,0, . . . ,0)>

)
(59)

2. Draw Nsi m random vectors Z with distribution N
(
0,Ŵ −1

)
and for each ns =

1, . . . , Nsi m , solve the following quadratic program,

tns = argmin
t≥0

(Zns − t )>Ŵ (Zns − t ) (60)

Let sns = ∑J
j=1 1

(
tns, j = 0

)
where J is the number of rows of Ĉ (and the dimension of

t ). For each j = 0, . . . , J ,

ω j = 1

Nsi m

Nsi m∑
ns=1

1
(
sns = j

)
(61)

The distribution of the test statistic under the null is then,

pr{T S ≤ u} =
J∑

j=0
ω j pr

{
χ2

j ≤ u
}

, (62)

where χ2
j is the chi-squared distribution with j degrees of freedom and χ2

0 is a point
mass on zero.

3. Use the distribution to compute the p-value of the hypothesis that B>
1 θ = b and θ =

θ. Then, search across θ to find a value of θ where the p-value is greater than the
threshold required for the confidence interval.

We then repeat this for each b to construct a confidence interval for the parameter.

5.1 A specific estimator to use in practice

In this section, we give a “cookbook” version of our estimator we found works well in practice.

Step 1. Choose how flexible to allow the materials output elasticity to be. The translog produc-
tion function has a linear-in-logs output elasticity, a good place to start.

Step 2. Given our choice of a flexible materials elasticity, estimate the bounds using the same
functional form. Here, we will assume the output elasticity is chosen to be linear-in-logs.

Step 3. Estimate the upper bound on the materials elasticity by regressing log output on the
translog function of log labor, log capital, and log materials, which gives a linear-in-log inputs

13



upper bound to the materials’ elasticity,

qi t = ρ``i t +ρ```2
i t +ρ`k`i t ki t +ρ`m`i t mi t +ρk ki t +ρkmki t mi t +ρkk k2

i t +ρmmi t +ρmmm2
i t +υq

i t .
(63)

Step 4. Estimate a linear-in-log inputs approximation to the lower bound, fitting the following
non-linear model,

log

[
WM Mt

Revenuet ×E
[
exp(εt )

]]
= log[κ0 +κ``t +κk kt +κmmt ]+υr

t (64)

E
[
υr

t |`t ,kt ,mt
]= 0. (65)

In levels, the model is linear so we can estimate it with OLS (it has a multiplicative residual but
is otherwise standard),

WM Mt

Revenuet ×E
[
exp(εt )

] = [κ0 +κ``t +κk kt +κmmt ]exp
(
υr

t

)
(66)

Step 5. With estimates of κ and ρ in hand, we form the linear inequalities that define the iden-
tified set,

κ0 +κ``i t +κk ki t +κmmi t ≤ θ0 +θ``i t +θk ki t +θmmi t ≤ ρm +ρ`m`i t +ρkmki t +2ρmmmi t .
(67)

Step 6. Recall that we want to know bounds on a linear function of coefficients from a linear
regression of markups (P/MC ) on some plant characteristics X ,

P

MC
= X >β+E , E [X E ] = 0 (68)

Statistic of interest = τ= c>β. (69)

Because P/MC is,

P

MC
= Revenue

WM M
× (θ0 +θ``+θk k +θmm) , (70)

a linear function of θ, to compute the linear function of θ that corresponds to the statistic of
interest, we can write,

Revenuei t

WM Mi t
yi t = X >βy +E y

i t E
[

X E y
i t

]= 0 (71)

τy = c>βy for all y ∈ {1,`,k,m} (72)

τ= τ1θ0 +τ`θ`+τkθk +τmθm (73)

Where (τ1,τ`,τk ,τm) can all be estimated directly from the data.

Step 7. Use the hypothesis test to form confidence intervals for τ.

If we are interested in a statistic of productivity or of the full production function, then we
also need to choose functional forms for f

(
kt ,`t ,mt

)
and g (`t−1,kt−1,mt−1). We suggest using

translog functional forms for both.
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6 Constant returns to scale

It is possible to achieve point identification in the standard proxy structure of Section 2 with-
out assuming conduct. For example, constant returns to scale plus the proxy structure point
identifies the production function. The basic intuition is:

1. From Gandhi, Navarro, and Rivers (2015), we know that for a given materials output elasticity
( fm), we can recover the production function.

2. From Constant Returns to Scale, we know that fm = 1− fk − f`. This creates a fixed point
problem which, we will show (under some assumptions) has a unique solution.

While the structure of constant returns to scale is significant, point identification (or, at least,
narrower bounds) may be necessary in contexts where we want to rule out perfect competition
(we want to find evidence of market power or to find how average markups have changed over
time). The bounds we presented in earlier sections are useful for discovering which kinds of
firms or plants have more or less market power.

Write:

∂ f

∂m
:= h (`,k,m)

(74)

qt −
∫ mt

m
h (`t ,kt ,m)dm = f

(
`t ,kt ,m

)+ g (`t−1,kt−1,mt−1)+ηt

(75)

=⇒ E

[
qt −

∫ mt

m
h (`t ,kt ,m)dm|`t ,kt ,`t−1,kt−1,mt−1

]
= f

(
`t ,kt ,m

)+ g (`t−1,kt−1,mt−1)

(76)

Because,

f (`,k,m) = f
(
`,k,m

)+∫ m

m
h (`,k,m)dm (77)

=⇒ ∂ f

∂`
= ∂ f

∂`

(
`,k,m

)+∫ m

m

∂h

∂`
(`,k,m)dm (78)

∂ f

∂k
= ∂ f

∂k

(
`,k,m

)+∫ m

m

∂h

∂k
(`,k,m)dm, (79)

constant returns to scale implies,

∂ f

∂k

(
`,k,m

)+∫ m

m

∂h

∂k
(`,k,m)dm + ∂ f

∂`

(
`,k,m

)+∫ m

m

∂h

∂`
(`,k,m)dm +h (`,k,m) = 1. (80)

We can then substitute expressions for the other terms in terms of the data and the unknown
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function h,

∂

∂kt
E

[
qt −

∫ mt

m
h (`t ,kt ,m)dm|`t ,kt ,`t−1,kt−1,mt−1

]
+

∫ m

m

∂h

∂k
(`,k,m)dm

(81)

+ ∂

∂`t
E

[
qt −

∫ mt

m
h (`t ,kt ,m)dm|`t ,kt ,`t−1,kt−1,mt−1

]
+

∫ m

m

∂h

∂`
(`,k,m)dm +h (`,k,m) = 1.

(82)

If h is linear-in-parameters (θ) then the problem has the form,

c (`t−1,kt−1,mt−1,kt ,`t )>θ+b (`t−1,kt−1,mt−1,kt ,`t ) = 1, (83)

where c and b are functions point-identified by the data. Then, for example,

E
[
cc>

]
θ = E [c (1−b)] (84)

If E
[
cc>

]
is invertible, then θ is identified. Other identification conditions would work too (for

example, the condition that there exist at least J linearly independent vectors c (`t−1,kt−1,mt−1,kt ,`t )).

For more nonparametric results, suppose that there are two functions h0 and h1 that satisfy the
conditions. Then:

h1 (`,k,m)−h0 (`,k,m) = ∂

∂kt
E

[
qt −

∫ mt

m
h0 (`t ,kt ,m)dm|`t ,kt ,`t−1,kt−1,mt−1

]
+

∫ m

m

∂h0

∂k
(`,k,m)dm

+ ∂

∂`t
E

[
qt −

∫ mt

m
h0 (`t ,kt ,m)dm|`t ,kt ,`t−1,kt−1,mt−1

]
+

∫ m

m

∂h0

∂`
(`,k,m)dm

− ∂

∂kt
E

[
qt −

∫ mt

m
h1 (`t ,kt ,m)dm|`t ,kt ,`t−1,kt−1,mt−1

]
−

∫ m

m

∂h1

∂k
(`,k,m)dm

− ∂

∂`t
E

[
qt −

∫ mt

m
h1 (`t ,kt ,m)dm|`t ,kt ,`t−1,kt−1,mt−1

]
−

∫ m

m

∂h1

∂`
(`,k,m)dm

= ∂

∂kt
E

[∫ mt

m
(h1 −h0)dm|`t ,kt ,`t−1,kt−1,mt−1

]
+ ∂

∂`t
E

[∫ mt

m
(h1 −h0)dm|`t ,kt ,`t−1,kt−1,mt−1

]
−

∫ m

m

∂

∂k
(h1 −h0)dm −

∫ m

m

∂

∂`
(h1 −h0)dm

If h does not vary with m, then we have nonparametric identification.

The identification result can be made nonparametric at a high level by making the following
definitions and assumptons:

1. h can be approximated by a linear-in-parameter sieve,

inf
θ,J

sup
`,k,m

|h (`,k,m)−
J∑

j=1
r j (`,k,m)θ j | = 0 (85)
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2. Define c j as,

c j (`,k,m,`t−1,kt−1) =− ∂

∂kt
E

[∫ mt

m
r j

(
`t ,kt ,m′)dm′|`t ,kt ,`t−1,kt−1,mt−1

]
+

∫ m

m

∂r j

∂k

(
`,k,m′)dm′

− ∂

∂`t
E

[∫ mt

m
r j

(
`t ,kt ,m′)dm′|`t ,kt ,`t−1,kt−1,mt−1

]
+

∫ m

m

∂r j

∂`

(
`,k,m′)dm′+ r j (`,k,m)

3. Suppose that E
[

c J c>J
]

has an eigenvalue bounded away from 0 across J .

4. Define the sequence h J = r>
J θJ . limh J = h.

We present results under both our weaker, partial identification conditions and using the above
point identification results under the constant returns to scale assumption.

7 Nonparametric identification

Let f and h be two homogenous of degree one functions on (`,k,m) and define z ≡ fm −hm .
Let the space of functions z be called Z . The following condition is necessary and sufficient for
identification,{

z ≡ ∂

∂kt
E

[∫ mt

m
zdm|`t ,kt

]
+ ∂

∂`t
E

[∫ mt

m
zdm|`t ,kt

]
−

∫ m

m

∂z

∂k
dm −

∫ m

m

∂z

∂`
dm

}
(86)

=⇒ z ≡ 0 or z 6∈Z (87)

Proof of sufficiency. Trivial.

Proof of necessity. Suppose the identifiation assumption were not true

8 Markups and trade

Having identified the main policy parameter of interest and proposed a method to estimate it,
we now turn to the specifics of the problem we face as well as a simple Monte Carlo to show
the dangers of ignoring the identification problems we raised in Section 2 when attempting to
answer the main question.

We are interested in understanding the differences in markups between plants who export and
plants who do not. We start with exactly how we measure markups in the data given that plants
may belong to two markets and their markups can be different in each market. We then give
a simple theoretical model that illustrates the main predictions of the theory we will test em-
pirically and use that model as the basis for a Monte Carlo illustrating how our identification
method leads to correct inference about the relationship between markups and export status
when current methods in the literature would not.
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8.1 Defining markups

Letλ be the the Lagrange multiplier for the output constraint in the cost minimization problem,
WM be the price of materials, and F be exp

(
f
)
, the level production function. Because plants

minimize their variable costs and materials are chosen flexibly, the first order conditions for the
cost minimization problem give,

WM =λ ∂F

∂M
A ⇐⇒ WM M =λ ∂ f

∂m
Q (88)

=⇒ λ= WM M

Q
×

[
∂ f

∂m

]−1

, (89)

and, by the envelope theorem, marginal cost is equal to λ.

To recover markups, suppose a plant gets one price for the goods it sells in the domestic market
(Pdom) and another price in the world market (Pworld),

Q =Qdom +Qworld (90)

Pdom

MC
× Qdom

Q
+ Pworld

MC
× Qworld

Q
= Revenue

WM M
× ∂ f

∂m
, (91)

where Qdom is output sold to the domestic market and Qworld is output sold to the world market.

Because we observe revenue, we can recover the left hand side if we can identify the output
elasticity for materials.

For non-exporters, the left hand side is their price-to-marginal cost ratio, a natural measure of
markups. For exporters, the measure is an output-share weighted measure of markups in the
domestic market and markups in the world market. When estimating the relationship between
export status and markups, we will need to control for the amount a plant exports relative to
its total output or else differences between world price and domestic price might cause us to
make misleading inferences about the validity of the theory that exporters have higher markups
within their home market4. The risk is not hypothetical: because, we will show, Chilean ex-
porters earn lower markups in the world market than domestically, not controlling for the rel-
ative intensity with which a plant competes in the world market versus the domestic market,
would lead us to conclude export status is negatively related to markups but we usually find
support for the opposite conclusion when we control for how much of a plant’s total output
goes to the world versus domestic markets.

8.2 A simple model where greater productivity gives greater markups

In this section, we use a simple model to show the main theoretical prediction we test: does
the greater productivity of exporters give them greater market power? The model is a simplified

4Ideally, we would be able to use domestic markups and world markups separately but we do not observe a
distinction between materials used to produce products to export and materials used to produce products for the
domestic market.
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version of Melitz and Ottaviano (2008) and a broad class of other monopolistic competition
models with firm heterogeneity.

Each firm i produces its own unique variety. The inverse demand for variety i is

Pi =α−βQi −η
∫

Qi di =α−βQi −ηQ. (92)

Each demand parameter
(
α,β,η

)
is positive. There is a continuum of small firms so each takes

Q as given when maximizing their profit. Each firm has a constant marginal and average cost
Ci .

In the closed economy, when there is only one market, the firm’s profit maximization problem
gives,

max
Qi

(
α−Ci −βQi −ηQ

)
Qi (93)

=⇒ Qi = α−Ci

2β
− η

2β
Q. (94)

Markups are then (ignoring that when markups would be negative by this formula, the firm will
choose zero output),

α+ Ci −α
2

+ η

2
Q −ηQ −Ci = α

2
− Ci

2
− η

2
Q, (95)

and so markups are clearly decreasing in Ci ; firms with greater costs (lower productivity), have
lower markups.

Now suppose that there is a second market where inverse demand is,

P ′
i =α′−β′Q ′

i −η′
∫

Q ′
i di =α′−β′Q ′

i −η′Q
′
, (96)

and each demand parameter is positive.

A domestic firm can enter the second market at a cost, σ. Because all firms are small, when
they decide which market to enter, they will not consider how they effect the total mass of firms

within each market. Let Q be the total output of firms in the domestic market and Q
′

be the total
output in the foreign market. A firm in the domestic market solves the market entry problem,

max
{
Π

(
Ci ;Q

)
+Π′

(
Ci ;Q

′)−σ,Π
(
Ci ;Q

)}
, (97)

whereΠ (·; ·) is the profit function in the domestic market andΠ′ (·; ·) is the profit function in the
foreign market.

So domestic firms enter the foreign market if and only if,

Π′
(
Ci ;Q

′)≥σ. (98)
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BecauseΠ′
(
·;Q

′)
is a strictly decreasing function for all Q

′
, exporters are the firms with,

Ci ≤
(
Π′)−1

(
σ;Q

′)
. (99)

So, for any market equilibrium
(
Q,Q

′)
, firms with lower costs will be exporters. So, within each

market, exporters will be the more productive firms and enjoy higher markups.

8.3 Monte Carlo

We demonstrate with a Monte Carlo how misleading our inferences about markups can be if we
ignore the identification problem raised in Section 2. The model is similar to the model in the
previous section in that it has a model of monopolistic competition in mind so there is some
concavity in the plant’s revenue function. In order to give the proxy model the best chance of
doing well, we have one dynamic input (capital) that is fixed in period t so that it does not suffer
from the flexible input identification problem.

We generate the data by treating each plant as if it were its own monopoly — without entry
and exit, there is nothing fundamentally different between this model and a monopolistically
competitive model.

We use a simple model where kt (capital) is the quasi-fixed input and materials mt is the flex-
ible input (used as the proxy variable). There is no labor input. The firm solves the following
Bellman equation:

V (A,K ) = max
M ,X

[
MθK γA

]η+1 −WM M −WK K −WX X +βE [V (Aυ,δK +X )]

logυ∼ N
(
0,σ2)

with parameter values:

θ = 0.6,γ= 0.3,σ= 0.5,β= 0.95,δ= 0.9,WK = 0.5,WX = 0.2,

log(K0 −1) ∼ N (0,1) , log A0 ∼ N (0,1)

WM ∼U [0.3,0.5] ,η=−0.4.

Because the revenue function is strictly concave, the firm will earn positive markups. We allow
the materials input price to vary across plants in order to demonstrate:

1. Even with observed variation in input prices, the De Loecker and Warzynski (2012) approach
based on the proxy model will fail to estimate the correct markups because, conditional on
lagged wages, the second lag of materials has no power as an instrument.

2. Second, even though our identification approach does not explicitly allow for unobserved
variation in input prices, our bounds are fairly robust to this variation.

The statistic of interest is the average difference in (P/MC ) between a group we will call “ex-
porters” and a group we will call “non-exporters” in anticipation of our application. In con-
structing the Monte Carlo, “export” status will simply be a dummy indicating the plant likely
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has higher markups,

“Exporter” = 1
(

P

MC
−2+ shock > 0

)
shock ∼ N (0,1) .n (100)

The De Loecker and Warzynski (2012)-based estimator we use assumes the production function
is Cobb Douglas (as it is), uses a translog functional form to approximate E

[
qi t |mi t ,ki t , wm,i t

]
,

and correctly assumes an AR1 process for productivity. Because materials appears in the proxy
function, we use the second lag of materials as an instrument, and because capital is a fixed
input, we use ki t as an instrument because it is uncorrelated with the innovation shock. Be-
cause, with knowledge of wi t−1, there is no variation in wi t that is correlated with mi t−2 (there
is no variation in wi t at all after conditioning on wi t−1), mi t−2 will not have any power as an
instrument.

For the bounds results, We use the exact estimator we proposed in Section 5.1 without taking
advantage of the fact that the true production function is Cobb-Douglas5.

In Table 1, we give the results of the 10,000 simulation Monte Carlo. The key takeaways are,

1. The density of the proxy estimates is bi-modal because it is not identified (see Figure 1).
17.23% of the time the estimate of the difference in markups is negative even though, by
construction, the indicator for export status is based purely on whether the firm has high
markups. While the bias of the estimator is not so bad (see Table1), the bi-modal nature of
the estimator makes that a misleading way to judge the estimate.

2. In constrast, our lower bound on the effect of export status on markups is never negative so
we would always make the correct inference about the direction of the average difference in
markups.

3. Our bounds contain the true value of the average difference in markups 91.55% of the time
(these bounds are not confidence intervals).

4. The upper bound estimate is weak for this particular data generating process (mean value
of upper bound on difference ≈ 2.7; true value of difference is ≈ 0.4), but the lower bound
estimate (the Gandhi, Navarro, and Rivers 2015 estimator) is tighter.

5If we knew the production function was Cobb-Douglas, there would be little point in worrying about identify-
ing markups for a regression problem because the regression of log markups (logP − log MC ) on covariates would
be identified without estimating the flexible output elasticity at all.
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Table 1: Monte Carlo Results

Estimator Statistic Value

True Model True Value 0.408

Proxy
Mean Estimate 0.379

Standard deviation 0.290
Probability negative 0.172

Bounds
Mean Estimate [0.395,2.738]

Standard deviation {0.024,0.516}
Probability negative 0.000

Probability bounds contain estimate 0.916

Figure 1: Proxy estimates of the difference in markups between exporters and non-exporters
(Monte Carlo); red line is true difference
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9 Data

We apply our identification strategy to study the relationship between export status and markups,
using a plant level dataset from Chile’s Instituto Nacional de Estadística’s census of manufactur-
ing plants with more than 10 employees. The dataset has been used in several other papers in
the production function estimation and trade literature, see Levinsohn and Petrin (2003), Pavc-
nik (2002), and Gandhi, Navarro, and Rivers (2015).

Our measure of plant output is deflated revenue. If there is only one output price in each in-
dustry, then it is fine to treat revenue as output because the price will just change the location
of the log production function—which is not identified anyway. But there may be problems if
there is price variation that the deflator can not pick up—of course, this is a long-standing issue
with production data and not unique to our data and problem.

We measure the labor input by number of employees, capital using data on investment and
depreciating that invest to recover capital (as in Greenstreet 2007), and deflated spending on
materials as our measure of material use.

The panel runs from 1990 to 1996.

We define the industries at the two-digit level (each industry will have its own production func-
tion, f ).

In Table 2, we give descriptive statistics of the industries that are important for understanding
competition within the industry which is our ultimate object of interest. The table contains
information about the industry’s size (total sales), measures of competition within the industry
(sales concentration and the number of plants), and the number of exporters and how that
number has changed over time. Generally, the number of exporters has increased over time
while plant concentration measures have remained relatively stable (with the exception of the
Chemicals industry).
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Table 2: Descriptive statistics of industries

Industry Year Sales (1985 Trillion Pesos) C8 Plants Exporters

Pooled
1990 6.3 27.0% 3625 666
1996 13.9 13.7% 4059 1013

Food
1990 1.6 18.7% 1142 215
1996 4.7 19.6% 1154 294

Textiles
1990 0.4 19.4% 703 91
1996 0.9 22.2% 661 160

Wood products
1990 0.2 28.2% 330 72
1996 0.8 30.6% 455 103

Paper
1990 0.4 59.0% 194 32
1996 1.2 50.3% 224 61

Chemicals
1990 1.2 58.2% 444 128
1996 1.9 25.1% 531 190

Non-metal minerals (not oil/coal)
1990 0.2 64.2% 122 22
1996 0.6 54.3% 162 28

Basic metals
1990 1.7 75.0% 60 24
1996 2.4 70.4% 61 30

Fabricated metal products
1990 0.6 26.2% 586 76
1996 1.4 26.1% 727 132

Notes. C8 is the eight-plant sales concentration (sales of the eight plants with greatest sales divided
by total industry sales).
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10 Do exporters have higher revenue-to-cost ratios?

Before turning to our main results, we first consider what we can learn from the data and
reduced-form measures of the effect of the export status on markups, both to illustrate the ad-
vantages of modeling markups in a structural way and to see what we can learn from the data
before arguing for a certain structural interpretation of the data.

Suppose the industry production function had constant returns to scale, each input was chosen
flexibly, and plants minimized costs. Then,

P

MC
= PQ

WLL+WK K +WM M
, (101)

price over marginal cost is equal to the ratio of revenue-to-costs6.

More generally, the ratio of revenue-to-costs contains information on two things: (1) the markup
of the plant and (2) the productivity of the plant7. So establishing the relationship between plant
export status and the revenue-to-costs ratio establishes how export status predicts the combi-
nation of markups and productivity. In the following section, we will use our partial identifica-
tion strategy to parse out how export status is related to markups and productivity, separately.
But first, we establish the combined effect from the data.

We run the following regression,(
PQ

WLL+WK K +WM M

)
i j t

= τ̃×Exporteri j t +βk ki j t +β``i j t +βe ×
Exportsi j t

Revenuei j t
+µt +ξ j +ui j t ,

(102)

where i indexes plant, j indexes the 4-digit industry the plant belongs to, and t indexes year8.
We run the regression 2-digit industry-by-industry and also pooling across industries. The re-
gression is similar to De Loecker and Warzynski (2012)’s model but with the notable difference
that we include the ratio of exports-to-revenue on the right hand side so that τ̃ is the difference
between the domestic revenue-to-cost ratio of exporters and the domestic revenue-to-cost ratio
of non-exporters. This control is necessary because theory only predicts that exporters will have
higher markups within their own market—not that they will have higher markups in the foreign
market. In the following sections, we will replace the ratio of revenue to input expenditures with
the ratio of price to marginal cost, but the form of the regression will be the same.

In most industries τ̃ is positive, exporters have higher revenue-to-cost ratios (see Table 3), giv-
ing reduced form evidence for the prediction that exporters earn higher markups. But another

6This result is true because the materials output elasticity is then equal to WM M/(WLL+WK K +WM M).
7The returns to scale matter too, but by assuming the industry production function depends only on input use,

we have already assumed the returns to scale are the same for exporters and non-exporters. Of course, reality
might be different.

8Capital is difficult to measure. We define capital as deflated cumulative investment as in Greenstreet (2007).
Nominal capital is the not deflated version of the measure with is what we take WK K to be. The other input prices
are clearer.
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Table 3: Relationship between Export Status and the Revenue-to-Cost Ratio

Industry Estimate Standard Error

Pooled 5.2% 0.8%
Food 7.1% 1.8%
Textiles 3.9% 1.6%
Wood products 1.0% 2.2%
Paper −1.3% 2.8%
Chemicals 2.5% 1.6%
Non-metal minerals (not oil/coal) 16.3% 4.4%
Basic metals 11.1% 5.2%
Fabricated metal products 9.9% 2.1%

explanation for the higher revenue-to-cost ratios has not been ruled out by these regressions:
if exporters are more productive, we might observe the same result even if the exporters have
no market power. We need a structural measure of markups in order to conclude that exporters
had greater market power.

11 Markups and export status

Many trade models predict exporters will have higher markups than non-exporters because
they predict more productive firms will have higher markups and that exporters are more pro-
ductive, like the model in Section 8.2, Melitz and Ottaviano (2008), and Bernard, Eaton, Jensen,
and Kortum (2003). Whether the prediction is true matters for the welfare effect of trade liberal-
ization because the theory predicts that, when a country opens up to trade, the domestic firms
that engage in trade will be the firms which also have more market power.

De Loecker and Warzynski (2012) also study whether exporters have higher markups empir-
ically, and they find support for this prediction. Relative to their work, aside from our con-
tributions to the methodology of recovering markups, we allow for the relationship between
markups and export status to vary by industry and control for the possibility that exporters en-
joy different markups in foreign markets. But the basic form of our regressions is similar to
theirs to isolate the effect of our new identification strategy.

We also make a small contribution to the large literature that establishes the positive relation-
ship between many different measures of productivity and whether a plant exports by con-
firming the positive relationship holds in the industries we study—and because we use weaker
assumptions to identify productivity than the rest of the structural productivity literature, the
result is even more robust. See the citations in Syverson (2011)’s survey for a list of papers that
find exporters are more productive.

Let µ be our measure of markups,

µ= Revenue

WM M
× ∂ f

∂m
. (103)
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Our main regression model is,

µi j t = τ×Exporteri j t +β``i j t +βk ki j t +βe ×
Exportsi j t

Revenuei j t
+δt +ξ j +ui j t , (104)

Where τ is the coefficient of interest and j indexes the 4-digit industry so we have industry fixed
effects at the 4-digit level. τ is the difference in markups between exporters and non-exporters
when the percentage of exported revenue is zero, which allows us to compare the domestic
markups of exporters with the domestic markups of non-exporters. The theory in Section 8.2
predicts τ≥ 0.

Recall our measure of markups is,

µ= Qdom

Q
×

(
P

MC

)
dom

+ Qworld

Q
×

(
P

MC

)
wor l d

, (105)

which is why we need to control for exports to make sure we are comparing domestic markups
to domestic markups (otherwise, exporters might have lower markups in the world market than
in the domestic market and we would pick up a negative relationship between export status and
markups but that would not violate the theory in Section 8.2). Theory is less clear on the sign of
βe ; it is an empirical question whether exporters have higher markups in Chile or in the world,
an empirical question we answer. But, intuitively, competition is tougher when we include all
the world’s competitors than among only Chilean competitors, implying the sign is negative.

We bound τ (and βe ) industry-by-industry at the two-digit level. We also present results that
pool the data and bound τ using data from all industries (i.e. force the production function to
be the same for all industries).

We find that, generally, exporters have higher domestic markups in Chile than non-exporters as
predicted in Section 8.2. While there are some industries where the theory does not hold (the
Paper and Chemicals industries), the higher markup result holds when we pool across indus-
tries and in most industries when we approach the problem industry-by-industry.

We also find strong evidence that βe < 0—that is, Chilean exporters have lower markups in
the foreign market than they do domestically (only in the Paper industry is βe > 0). The world
market is more competitive than the domestic market.

We let the material output elasticity be a linear function of log input use,

∂ f

∂m
= θ0 +θ``+θk k +θmm, (106)

and use the functional forms we proposed in Section 5.1.

To test the theory, we need to bound the coefficients in two regressions,

µi j t = τ×Exporteri j t +β``i j t +βk ki j t +βe ×
Exportsi j t

Revenuei j t
+δt +ξ j +ui j t (107)

ai j t = τa ×Exporteri j t +βa,``i j t +βa,k ki j t +δa,t +ua,i j t (108)
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The theories we want to test correspond to the following sign restrictions on the parameters,

(1) Exporters have higher markups =⇒ τ≥ 0.

(2) Exporters are more productive =⇒ τa ≥ 0.

(3) If exporters are more productive, they have higher markups =⇒ ττa ≥ 0.

We find strong support for the prediction that exporters are more productive. In the pooled
results, 1.1% ≤ τa ≤ 7.3%, and in most industries, exporters are more productive than non-
exporters of similar size (only in the Wood Products industry is there evidence that exporters are
less productive than non-exporters). We also find support for the prediction that exporters have
higher markups. In the pooled results, −0.9% ≤ τ≤ 2.8% but in most industries the bounds are
positive. But in the Paper and Chemicals industry there is evidence that exporters have lower
markups than non-exporters. Because we find τa mostly positive and τ mostly positive, we
find evidence for the third prediction as well: that more productive plants tend to have higher
markups. But, in the Wood Products industry, we find τa < 0 and τ > 0, contradicting the pre-
diction.

See Table 4 for full results, including bounds on βe , all of which are negative, implying exporters
have lower markups in the world market than domestically. This result is robust and very well-
identified by the economic assumptions we use for identifiecation.

We do not observe wage variation so we can not use De Loecker and Warzynski (2012)’s method
to identify the production function as we argued in Section 2. But to see what we would get, in
the results presented in Table 5, we ignore the non-identification result and use the second lag
of log material use as an instrument. Most of the estimates from using this method are outside
the bounds we constructed using our method.

But that the De Loecker and Warzynski (2012) method often produces “reasonable” estimates
suggests there are issues we need to overcome with the proxy model more generally. The non-
identification problem with using lagged inputs is not that the instruments are invalid (an
untestable hypothesis) but that the instruments have no power (a testable hypothesis). To es-
timate the production function using the De Loecker and Warzynski (2012) approach (we do
not observe wages), we approximate f (`i t ,ki t ,mi t ) and g (`i t−1,ki t−1,mi t−1) by second order
polynomials and use the natural excluded instruments(

mi t−2,mi t−2`i t ,mi t−2ki t ,m2
i t−2

)
(everywhere mi t appears in f (·) replace it with mi t−2).

In the proxy model without wage variation (the model in Section 2 and Gandhi, Navarro, and
Rivers 2015), mi t−2 and its various interactions are valid instruments (they are uncorrelated
with the residual) but they have no power because mi t−2 can not predict ei t — the shock to
productivity — which is the only separate variation in mi t , given (`i t ,ki t ,`i t−1,ki t−1,mi t−1)
(see Section 2). We can test whether mi t−2 has any power as an instrument using a Cragg and
Donald (1993) test which tests the null hypothesis that the model is underidentified. If the test
is rejected, then the proxy model without wage variation is rejected because the instrument
should be weak.
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We can see from Table 6 that the test is rejected at conventional significance levels in most
industries and in the pooled sample. This result suggests that the proxy model is missing some-
thing: innovations in productivity are not just noise but depend on other plant characteristics
that are proxied by mi t−2. There are two potential responses to this result: (1) get more columns
in the dataset, allow the production function to vary by more plant characteristics, or (2) do not
require the innovations to be random noise, allow there to be unobserved plant-level variables
that affect productivity, so that this result does not contradict the model—see, for example, the
partial identification approach in Flynn (2018).

Lastly, a bit of caution. While the particular goal of this paper is to show how the proxy assump-
tions can identify markups, the idea that markups have a distribution can present a unique
challenge to the proxy model’s assumption that there is only one unobserved state variable,
productivity. Because markups can only vary across state variables, this restricts the extent to
which markups can vary across plants. We might imagine that some market power is derived
from product differentiation and, if we want to allow for these additional unobservable state
variables to affect the markup distribution, we need to replace the invertibility assumption with
another assumption that bounds the flexible output elasticity from above but allows for mul-
tiple unobserved state variables. The “linear positive association” from Flynn (2018) satisfies
both of these requirements and can be used as an alternative to the invertibility assumption
to bound the flexible output elasticity from above. If we impose the linear positive association
assumption, we also do not need the Markov structure to achieve meaningful identification of
productivity because linear positive association restricts all output elasticities—but the Markov
assumption does provide substantially more identifying power (at the cost of being somewhat
ad-hoc).
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Table 4: Relationship between Export Status, Productivity, and Markups

Industry Dependent Variable LB (90%) LB UB UB (90%) CRS

Pooled
Markups −0.9% 2.8% −1.2%
Productivity 1.1% 7.3% 4.9%
βe −28.0% −18.2% −24.3%

Food
Markups 2.7% 6.2% 1.6%
Productivity −5.0% 4.7% −4.7%
βe −30.4% −21.4% −35.9%

Textiles
Markups 2.7% 3.3% 7.6%
Productivity 6.6% 10.1% 5.3%
βe −37.7% −28.0% −27.7%

Wood products
Markups 6.9% 10.2% 1.4%
Productivity −18.7% −9.4% −8.4%
βe −46.1% −30.2% −8.1%

Paper
Markups −9.9% −4.1% −110.4%
Productivity 8.4% 14.7% −32.9%
βe 6.5% 16.2% −36.5%

Chemicals
Markups −15.4% −11.9% −41.9%
Productivity −7.2% 1.8% −14.6%
βe −49.3% −34.2% −51.6%

Minerals
Markups 6.5% 9.1% 10.5%
Productivity 5.0% 9.5% 1.7%
βe −41.1% −25.5% −66.2%

Basic metals
Markups 15.1% 22.7% 17.8%
Productivity 6.4% 16.3% 20.2%
βe −42.1% −21.1% −25.4%

Fabricated metal products
Markups 1.9% 7.8% 0.8%
Productivity 9.0% 14.6% 12.4%
βe −33.4% −21.1% −19.8%

Notes. LB (90%) and UB (90%) are the lower and upper limits of the 90% confidence interval. CRS
estimates are the point estimates from assuming constant returns to scale.
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Table 5: Relationship between Export Status, Productivity, and Markups (using the second lag
of log materials as an instrument)

Industry Dependent Variable Estimate

Pooled
Markups 15.2%
Productivity 0.1%

Food
Markups 8.0%
Productivity −13.0%

Textiles
Markups 11.5%
Productivity 2.0%

Wood products
Markups 8.8%
Productivity −15.4%

Paper
Markups − (13.2×100)%
Productivity −3.2%

Chemicals
Markups − (1.0×100)%
Productivity −19.0%

Minerals
Markups 18.9%
Productivity 6.9%

Basic metals
Markups 54.3%
Productivity 0.1%

Fabricated metal products
Markups 16.9%
Productivity 1.3%

Table 6: Cragg and Donald Test of Power of mi t−2

Industry Test Statistic P-value

Pooled 80.1 0.0%
Food 20.4 0.0%
Textiles 8.5 0.4%
Wood products 7.0 0.8%
Paper 0.2 96.8%
Chemicals 0.9 34.4%
Non-metal minerals (not oil/coal) 9.6 0.2%
Basic metals 0.6 45.4%
Fabricated metal products 25.1 0.0%
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12 Conclusion

Identifying markups by directly recovering marginal costs can allow us to recover markups while
putting less structure on conduct and to learn about competition in industries with poor de-
mand data. But identifying marginal costs faces difficult simultaneity problems that are often
overcome in the traditional production function and cost function estimation literature by mak-
ing the conduct assumptions we are trying to avoid. We show that the standard proxy model
can partially identify the production function, and so, partially identify marginal costs, without
making these assumptions.
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A Nonparametric inference

We first show how nonparametric inference on the production function itself might be done
given the two identifying assumptions. We will not use this method in our application where
we will instead take advantage of the form of the final statistic we are interested in — a coef-
ficient from the regression of markups on plant characteristics, not the production function
itself — and use a flexible parametric form for the production function. We include a method
of nonparametric inference on the production function for completeness and to connect our
identifying assumptions to inference problems previously studied in the econometrics litera-
ture.

The inequality restrictions can be written as,

∂

∂mt
E
[
qt − f (`t ,kt ,mt ) |`t ,kt ,mt

]≥ 0 (109)

E

[
log

∂ f

∂mt
− log

(
WM M

Revenue×E
[
exp

(
qt −E

[
qt |`t ,kt ,mt

])])
|`,k,m

]
≥ 0. (110)

Under the null hypothesis that f = f0, the first identifying assumption is a test that a nonpara-
metric regression of qt − f (`t ,kt ,mt ) on (`t ,kt ,mt ) is increasing in mt . Chetverikov (2013)
presents a hypothesis test that can be used to test whether nonparametric regressions are in-
creasing in a given variable.

The second identifying assumption is a conditional moment inequality. Andrews and Shi (2014)
develop a method of nonparametric inference on conditional moment inequalities.

The tests can be combined using a valid, but likely conservative, method of inference using the
Bonoferri bounds.

The following is a valid nonparametric test of the hypothesis that f = f0 given our identifying
assumptions:
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1. Compute the p-value, π1, of the Chetverikov (2013) test that the first identifying assumption
is true.

2. Compute the p-value, π2, of the Andrews and Shi (2014) test that the second identifying as-
sumption is true.

3. Reject the null hypothesis if either π1 ≤α/2 or π2 ≤α/2 where α is the significance level.

If we want to be relatively more conservative with one of the identification assumptions, the
confidence set will have the same size if we reject the null if either π1 ≤ωα or π2 ≤ (1−ω)α for
some 0 <ω< 1.

An alternative approach that may have more power is to use Andrews and Shi (2017)’s method
of inference on (un)countably many conditional moment inequalities because the first identi-
fication assumption can be written as uncountably many conditional moment inequalities and
so can the second (as a finite number of conditional moment inequalities).
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